
NASA Contractor Report 182004

Design of an Integrated Airframe/

Propulsion Control System Architecture

G. C. Cohen

Boeing Advanced Systems

Seattle, Washington

C. W. Lee

Boeing Advanced Systems

Seattle, Washington

M. J. Strickland

Boeing Advanced Systems

Seattle, Washington

NASA Contract NAS1-18099

March 1990

NIL A
National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23665

Date for general release March 31, 1992

(NASA-CR-ISZOO4) _ES[GN _f AN INTEGKAT_O

AIRFRAME/PEOPULS[_N CONTROL SYSTEM

A_CHITECTURE (_oeing Advanced Syst_ns Co.)

5_6 p CSCL 12_
G3/66

N?Z-Z2643

w,-

PREFACE

°

This report describes the design of an embedded architecture for an

integrated f11ghtlpropulsion control system. The design procedure is based

on a prevalidation methodology. This work has been supported under NASA

contract NAS1-I0899, Integrated Airframe/Propulsion Control System

Architecture (IAPSA II).

The NASA technical monitor for this work is Daniel L. Palumbo of the NASA

Langley Research Center, Hampton, Virginia.

The work was accompllshed by the Flight Controls Technology organization at

Boeing Advanced Systems in Seattle, Washington. Personnel responsible for

the work performed include:

D. Gangsaas

T. M. Richardson

G. C. Cohen

C. W. Lee

M. J. Strickland

Responsible manager

Program manager

Principal investigator

System design and reliability analysis

Performance analysis

TABLE OF CONTgI_S

SECTION SHEET

1.0

2.0

3.0

3.1

3.1.1

3.1.2

3.2

3.2.1

3.2.2

3.3

3.3.

3.3.

3.3.

3.3.

3.3.

3.3.

3.4

3.4.1

3.4.2

3.4.3

3.4.4

4.0

4.1

4.1.1

4.1.2

4.1.3

4.1.4

4.1.5

4.2

4.2.1

SUMMARY

INTRODUCTION

CANDIDATE ARCHITECTURE EVALUATION

Development of Major Control Functions

Derivation of Subfunctions

Derivation of Data Transfer

Reference Configuration Layout

Flight Control I/O Network

Engine Control I/O Network

Reference Configuration Failure Protection

Application Computing

Application IIO Activity

Flight Control Sensing

Flight Control Actuation

Propulsion Control Sensing

Propulsion Control Actuation

Reliability Evaluatlon of Candidate

Flight Control Group Failure Analysis

Propulsion Group and Common Device Failure Analysis

Reliability Modellng

Reliability Results

CANDIDATE PERFORMANCE EVALUATION

Synthesize Candidate

Application Performance Requirements

Reference Configuration Analysis

Initial Timing

Initial AIPS Timing

Revised AIFS Timing

Critlcal Validation Issues

ApplicationlFDIR Coordination

I

3

7

7

9

37

37

40

42

46

48

49

53

54

56

57

60

64

71

86

i01

104

104

105

107

119

130

135

135

• °

W

TABLE OF CONTENTS (Continued)

SECTION

4.2.2

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

4.4

4.4.1

4.4.2

4.4.3

4.4.4

4.5

4.5.1

4.5.2

4.5.3

4.5.4

4.6

5.0

5.1

5.2

5.2.1

5.2.2

5.2.3

5.3

5.4

5.4.1

5.4.2

I/0 Network Repair

Define Experiments

Experiment Configurations

Experiment Procedure

I/O Network Repair Time (Experiment 2)

I/0 Scheduling (Experiment 3)

FDIR/Application Phasing (Experiment 4)

CP, IOP, I/O System, I/O Network Utilization (Experiment 5)

Experiment Execution Strategy

Build Model

Performance Tool

Simulation Model

Development Problems With Performance Model

Simulation Input Values

Evaluate

FPIR/Application Phasing (Experiment 4)

Utilization (Experiment 5)

I/O Scheduling (Experiment 3)

I/O Link Failure (Experiment 2)

Experiment Observations

REFINED ARCHITECTURE DESIGN

Function Allocation Changes

Data Distribution

I/O Network Option

Redundant Bus Option

Electric Power Distribution

Actuation Changes

Reliability Evaluation

Critical Assumptions

Results

SHEET

136

137

138

138

138

139

139

140

140

143

144

148

167

167

172

172

191

193

194

213

225

226

230

233

242

243

248

249

254

2_9

TABLE OF CONTENTS (Continued)

SECTION SHEET

m

5.4.3

5.5

6.0

6.1

6.1.1

6.1.2

6.1.3

6.1.4

6.1.5

6.2

6.3

6.3.1

6.3.2

6.4

6.4.1

6.4.2

6.5

6.6

6.6.1

6.6.2

7.0

Transient Threat

Timing Prediction

SMALL-SCALE SYSTEM TESTING

Testing Objectives

System Timing Characterization - Normal Conditions

System Timing Characterization - Fault Conditions

Application Timing Characteristics - Normal Conditions

Application Timing Characteristics - Input/Output Network

Fault Conditions

Application Timing Characteristics - Fault-Tolerant

Processor Fault Conditions

Experiment Descriptions

Experiment Test Configurations

System Under Test Elements

Test Facility Elements

Fault Insertion

General

Experiment-Pecullar Strategy

Test Control Strategy

Data Collection and Analysis

Standard Statistical Data

Event Summary Data

CONCLUSIONS

268

276

283

284

284

286

286

287

288

288

291

291

293

296

297

297

298

299

299

302

305

REFERENCES

APPENDIX A

APPENDIX B

REPORT DOCUMENTATION PAGE

309

A-I

B-I

v/

LIST OF FIGURES

FIGURE SHEET

3.1-1

3.1-2

3.1-3

3.1-4

3.1-5

3.1-6

3.1-7

3.1-8

3.1.1-1

3.1.1-2

3.1.1-3

3.1.1-4

3.1.1-5

3.1.1-6

3.1.1-7

3.1.1-8

3.1.1-9

3.1.1-10

3.1.1-11

3.1.1-12

3.1.1-13

3.1.1-14

3.1.1-15

3.2-1

3.2.1-1

3.2.2-1

3.3.2-1

3.3.2-2

3.3.4-1

3.3.6-1

Flutter Control Function

Manual Control Function

Wing Camber Control Function

Trajectory Following Function

Trim Control Function

Inlet Control Function

Engine Control Function

Nozzle Control Function

Flutter Subfunctions

Manual Control Subfunctions

Camber Subfunctlons

Trajectory Subfunctlons

Trlm Subfunctlons

Inlet Subfunctions

Engine Subfunctions

Nozzle Subfunctlons

Inertial Subfunctlons

Air Data Subfunctions

Pitch Coordination Subfunctlons

Flaperon Management

TE Flap Management

Rudder Management

Nosewheel Management

Reference Configuration Overview

Flight Control I/O Network 1 Layout

Left Engine I/O Network Layout

I/O Network Operation

Link Failure ReconfIEuration

Surface Actuation - Reference Configuration

Propulsion Actuation

i0

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

3O

31

32

33

39

41

45

51

52

55

58

PRECEDING PACE BLANK NOT FILMED

LIST OF lrIGIJRgS (Continued)

FIGURE SHEET

3.4-1

3.4-2

3.4.2-1

3.4.2-2

4.0-1

4.1.1-1

4.1.3-1

4.1.3-2

4.1.3-3

4.1.3-4

4.1.3-5

4.1.3-6

4.1.3-7

4.1.3-8

4.1.3-9

4.1.4-1

4.1.4-2

4.1.4-3

4.1.4-4

4.1.4-5

4.1.4-6

4.1.4-7

4.1.4-8

4.1.4-9

4.1.5-1

4.1.5-2

Flight Control Functions

Propulsion Control Functions

Temporary Exhaustion

Nearly Coincident Network - Sensor Recovery

Performance Evaluation Methodology

Example Application - Update Rate 100 Hz

DIU Operation Times

Primitive DIU Command Response Assumptions

Input-Output Activity Execution

Flight Control Computer Estimated Application Timing

Flight Control Computer Estimated Application Timing -

Rate Values

Flight Control Computer Estimated Application Timing

Engines Control Computer Estimated Application Timing

Engine Control Computer Estimated Application Timing -

Rate Values

Engine Control Timing - Estimated Application Timing

Application I/O Operation

HDLC Protocol - DIU Con.aand/Response Frame

Input-Output Activity Timing for Initial AIPS Timing

Flight Control Computer Initial AIPS Application Timing

Flight Control Computer Initial AIPS Application Timing -

Rate Values

Flight Control Computer Initial AIPS Application Timing

Engine Control Computer Initial AIPS Application Timing

Engine Control Computer Initial AIPS Application Timing -

Rate Values

Engine Control Computer Initial AIPS Application Timing

Input-Output Activity Execution

Flight Control Computer Revised AIPS Application Timing

62

63

82

83

102

106

109

ii0

112

113

114

115

116

117

118

120

122

123

124

125

126

127

128

129

131

132

vW

LIST OF FIGURES (Continued)

FIGURE SHEET

4.1.5-3

4.1.5-4

4.4.1-1

4.4.1-2

4.4.1-3

4.4.1-4

4.4.2-1

4.4.2-2

4.4.2-3

4.4.2-4

4.4.2-5

4.4.2-6

4.4.2-7

4.4.2-8

4.4.2-9

4.4.2-10

4.4.2-11

4.4.2-12

4,4.4-1

4.4.4-2

4.4.4-3

4.5.1-1

4.5.1-2

4.5.1-3

4.5.1-4

Plight Control Computer Revised AIPS Application Timing -

Rate Values

Flight Control Computer Revised AIPS Application Timing

DEVM I/O Definition for AIPS Node

ARC Definition for Inter-AIPS Node Connections

Parameter Definitions for AIPS Node

Example Topology Pile

Application Cycle

Example Application Simulation Topology

FTP Model

Processor DEVM

IO Service DEVM

IO Service Access Contention

IO System Contention Example

Application DEVM

IOS DEVM

AIPS Node DEVM

DIU DEVM

Network Manager DEVM

AIPS Time Elements (_s)

Flight Control Time Elements (_s)

Engine Control Time Elements (_s)

Experiment 4 Configuration 6 Phase 0 Application

Performance Parameters

Experiment 4 Flight Control Computer Preferred

Configuration

Experiment 4 Configuration 14 Phase 4 Application

Performance Parameters

Experiment 4 Engine Control Computer Phase 4

Configuration 14

133

134

146

147

149

150

152

152

154

155

157

159

160

162

164

165

166

168

169

170

171

175

177

179

181

LIST OF I_GIIRRS (Continued)

FIGURE SHEET

4.5.1-5

4.5.1-6

4.5.1-7

4.5.1-8

4.5.4-2

4.5.4-3

4.5.4-4

4.5.4-5

4.5.4-6

4.5.4-7

4.5.4-8

4.5.4-9

4.5.4-10

4.5.4-11

4.5.4-12

5.0-1

5.2-1

5.2.1-1

Experiment 4 Configuration 15 Phase 6 Application

Performance Parameters

Detailed View of 100 Hz Output Jitter

Experiment 4 Configuration 15 Phase 6 Case

Experiment 4 Configuration 16 Phase 3 Application

Performance Parameters

Experiment 4 Configuration 16 Phase 3 Case

Out of Service Time for 0ne-Shot Repair - Flight Control

Computer

Network 2 With No Faults

Experiment 2 Configuration 11, Link 72-73, Run 33

Experiment 2 Configuration 11, Link 72-73, Application

Performance Parameters

Out of Service Time for One-Shot Repair Engine Control

Computer

Network 2 With No Faults

Experiment 2 Configuration 13, Link 70-71, Run 21

Experiment 2 Configuration 13, Link 70-71, Application

Performance Parameters

Out of Service Time for Regrov Repair Flight Control

Computer

Experiment 2 Configuration 10, Application Performance

Parameters

Out of Service Time for Regrow Repair Engine Control

Computer

Experiment 2 Configuration 12, Link 70-71, Application

Performance Parameters

Refined Configuration Overview

Mesh Network and Linear Bus Options

Group A I/O Network Layout

183

186

187

189

190

196

199

203

206

207

208

211

212

213

218

219

221

227

234

?37

LIST OF FIGURES (Continued)

FIGURE SHEET

5.2.1-2

5.2.1-3

5.2.3-I

5.2.3-2

5.4-1

5.4.3-1

5.4,3-2

5.4.3-3

5.4.3-4

5.4.3-5

6.3-1

Group B I/O Network Layout

Body Motion Sensor Cross Connection

Refined Configuration - Node Power

Surface Actuation Power Connection

Safety Model Truncation

Simplified Model

Transient Ratio Sensitivity

Loss of Synch Fraction Sensitivity

Relative Scrub Rate Sensitivity

Soft Fault Disable Rate Sensitivity

Experiment Test Configuration

239

241

246

247

251

270

273

274

275

277

292

;d

LIST OF TABLES

T_

3.1-1

3.1.2-1

3.1.2-2

3.1.2-3

3.2.1-1

3.2.2-1

3.4.1-1

3.4.2-1

3.4.2-2

3.4.2-3

3.4.3-1

3.4.3-2

3.4.4-1

3.4.4-2

4.3.7-1

4.3.7-2

4.5.1-1

4.5.1-2

4.5.1-3

4.5.1-4

4.5.3-1

4.5.4-1

4.5.4-2

4.5.4-3

4.5.4-4

5.2-1

5.2-2

5.4.1-i

5.4.2-1

5.4.2-2

5.4.2-3

5.5-1

5.5-2

SHEET

IAPSA II Major Control Functions 8

Computing Allocation - Flight Control 35

Computing Allocation - Engine Control 36

Data Transfer Activity by Source 38

Sensor/Actuator Connection - Flight Control Networks 43

Sensor/Actuator Connection - Engine Control Networks 47

Function Failure Analysis - Flight Control 66

Fixed Propulsion Device Operation 73

Function Failure Analysis - Propulsion Control Loss Effect 74

Communication Device Failure Summary 80

Section Models - Flight Control 87

Section Models - Propulsion 88

Safety Reliability 96

Mission Capability Reliability 99

Experiment Configuration 141

Configuration for Experiment Execution 142

Experiment 4 Configuration 6 Summary - Flight Control Group 173

Experiment 4 Configuration 14 Summary 178

Experiment 4 Configuration 15 Summary 182

Experiment 4 Configuration 16 Summary 188

Summary I/O Scheduling 194

Experiment 5 Configuration II Summary 201

Experiment 2 Configuration 13 Summary 209

Experiment 2 Configuration i0 Summary 217

Experiment 2 Configuration 13 Summary 220

Sensor/Actuator Computer Connection - Group A 235

Sensor/Actuator Computer Connection - Group B 236

Section Modeling Allocation 255

Safety Model Results (x10-7), 3-hr Flight 261

Mission Model Results (x10-4), 1-hr Flight 263

Sustained Capability Results (x10-2), 50-hr 265

Refined Configuration Timing Data 280

Growth Factor Estimate 281

xJ

,,_C_.DINu PAGE E_LA[_K _OT FILMED

x_,

1.0 $_Y

During the detailed design effort for the IAPSA II contract, a candidate

architecture design based on AIPS fault-tolerant system building blocks was

evaluated for its ability to meet the demanding performance and reliability

requirements of a flight-crltical system. This effort yam conducted in

accordance vlth the IAPSA II prevalldatlon methodology. This methodology

was defined and an advanced fighter configuration was selected during an

earlier phase of this contract. A mission analysis of the

hlgh-perfor,mnce, multlrole, twln-englne fighter was conducted to define a

set of fllght-crltlcal requirements for this study during the earller

effort.

The preliminary evaluations shoved that the candidate needed some

refinements to meet the system requirements. It is significant that

several weaknesses in the candidate architecture became apparent that were

not evident in the initial rough performance and reliability calculations.

This effort shows that it is both possible and preferable to perform

detailed evaluation of concepts based on specifications before committing a

project to a hardware and software design.

The refined configuration was evaluated for reliability using improved

Markov modeling techniques. Although thls was much better than earlier

evaluation techniques, improvements are needed in the handling of very

large systems wlth a high degree of interdependency.

A set of objectives and experiments was defined for testing critical

performance characteristics using a small-scale system. The small-scale

system consists of existing proof-of-concept AIPS building-block hardware

and software components. It embodies key features of the IAPSA II design

and vlll be used to explore issues identified as a result of the

performance and reliability modeling effort. Experimental data will be

obtained that verify performance estimates obtained during the preliminary

simulation effort and measure timing characteristics critical to successful

operation.

2

2.0 _TRODUCI'ION

The purpose of this report is to document the results of the detailed

design of the IAPSA II system. This effort was carried out using the

prevalldatlon methodology developed during an earlier phase of this

contract. This report discusses the preliminary simulation experiments and

the reliability evaluation of the candidate architecture and shows how they

affect the resulting design. Additionally, a small-scale system that

captures the fundamental characteristics of the IAPSA II design and a plan

for using it in AIRLAB experimentation are defined.

The IAPSA II analysis and design effort is the continuation of a research

and technology program to investigate the benefits of integrated system

architectures and to demonstrate by experimentation in the NASA Langley

Avionics Integration Research Laboratory (AIRLAB) the properties of

promising architectures. Work under previous contracts achieved the

following: (1) defined major characteristics of an Integrated Airframe

Propulsion Control System Architecture, (2) proposed several candidate

system configurations, and (3) selected one as a basis for a preliminary

system design.

The overall objectives of the IAPSA II program are (1) analysis and

detailed design of an integrated control system architecture that satisfies

stringent performance and reliability requirements, (2) an analytical and

experimental approach for evaluating the architecture, and (3) installation

and limited experimentation on a small scale system test specimen in

AIRLAB.

The first phase of this contract, documented in reference 1, defined an

advanced fighter configuration for analysis, a prevalidation methodology,

and a candidate architecture based on the use of fault-tolerant system

building blocks. The advanced fighter is a twin-engine design with a high

degree of coupling between the propulsion system and the airframe. A

mission analysis was conducted on mission scenarios for this fighter to

PRECEDING PAGE BLANK NOT FILI_AED

derive the control system requirements. These requirements formed the

basis for the design of a control system architecture.

The methods used to design and validate the control system architecture are

as important to the IAPSA II contract as the architecture itself. The

prevalidatlon methodology defined in reference 1 emphasizes the early

evaluation of key performance and reliability characteristics of system

concepts using models of system behavior. This early evaluation ensures

that the system design is capable of meeting critical requirements. System

concept changes needed to meet these requirements can then be made early

when they have the greatest performance benefit and the least impact on

schedule and cost. Key performance and reliability assumptions identified

by the modeling effort will be tied to activities to validate the

implemented system.

A candidate system architecture defined by our subcontractor, Charles Stark

Draper Laboratory (CSDL), was evaluated to exercise the methodology. The

basic outline of the candidate architecture is provided in chapter five of

reference I. The more detailed definition of the candidate system

necessary to support the modeling effort is presented in sections 3 and 4.

The reliability evaluation effort was accomplished in four partsz (1)

system operating details and key reliability assumptions were defined to

support system modeling; (2) based on the key reliability measures

(safety, mission success, etc.), a failure analysis was conducted to define

how the system fails; (3) the ASSIST program was used to create a

corresponding failure model; and (4) the SORE model was executed and its

results used to indicate the candidate's strengths and weaknesses. The

reliability effort is covered in section 3.

The performance characteristics of the candidate architecture were

evaluated in normal and failure situations as required by the prevalidation

methodology. The evaluation effort consisted of four major parts: (1) the

key application sequencing and control options in the candidate system were

defined; (2) critical performance issues and simulation experiments were

defined for the candidate configuration; (3) a model of the critical

system workload and its use of the configuration elements was built using

4

the DENET tool; and (4) the DENET experiments were executed and the results

analyzed. This performance evaluation effort is described in section 4 of

this report.

The candidate system evaluation described in sections 3 and 4 shoved that

it was not capable of meeting the system requirements. The predicted

safety and mission reliability values exceeded the system constraints.

Additionally, the predicted timing needs of the major control functions

executing on the concept system did not leave adequate growth capabillty.

The flight control group application workload strained the system capacity

in both computing and II0 activity. As a result the IAPSA II system

concept was refined to improve its performance and reliability. The three

approaches taken to refine the candidate architecture to better match the

system needs are described in section 5. The results of a detailed

reliability evaluation of the refined configuration and a preliminary

performance analysis are also presented in this section.

Section 6 outlines the objectives and presents experiment definitions for

the small-scale system testing effort. The small-scale system embodies key

features of the IAPSA II design that will be evaluated in a limited

experimentation effort. The limited effort will explore a set of critical

aspects of the IAPSA II candidate architecture that were identified as a

result of the performance and rellability modeling effort. The small-scale

system consists of existing proof-of-concept AIPS building-block hardware

and software components. Two kinds of experimental data will be obtained.

First, certain performance estimates obtained during the prellminary

simulation effort will be verified. Performance simulation results will be

directly compared with applicable measurements made on the small-scale

system. Second, certain timing characteristics critical to successful

operation in normal and faulted situations will be measured experimentally.

One limitation of this small-scale system, of course, is that system level

interactions (e.g., communication between the flight control group and the

engine groups) cannot be tested. Another limitation is that the

experiments must make use of existing system testability features. Because

5

existing building block elements are used, no new "hooks" or test points

can be used to enhance visbility during experimentation.

6

3.0 CANDIDATE ARCaI_ECTL_E EVALUATION

The prevalidatlon methodology defined in reference A emphasizes the early

evaluation of key performance and reliability characteristics of system

concepts using models of the system behavior. Early evaluation ensures

that the system design is capable of meeting critical requirements. System

concept changes needed to meet these requirements can then be made early

when they have the greatest performance benefit and the least effect on

schedule and cost. In the IAPSA II detailed design effort a candidate

system architecture defined by our subcontractor, Charles Stark Draper

Laboratory (CSDL), was evaluated to exercise the methodology. The basic

outline of the candidate architecture was provided in chapter five of

reference A. A more detailed definition of the candidate system necessary

to support the modeling effort is developed in sections 3 and 4. Section 3

deals with reliability issues and section 4 with performance issues.

To support system modeling, three key aspects of the system must be

defined: (1) function partitioning, (2) physical and functional

interconnection, and (3) failure protection. Function partitioning defines

how the system functions (or processes) are allocated to system

configuration elements. Interconnection defines how the system elements

are interrelated. Finally, failure protection describes how the critical

system functions are preserved when system elements fail. The following

sections will provide elaboration of these characteristics for the

candidate architecture.

3.1 Development of Major Control Functions

The IAPSA II system performs control functions that are critical to the

flight safety and mission effectiveness of an advanced fighter. Table 3.1-

1 presents the major control functions developed for the vehicle in

reference i. These functions impose demanding performance and reliability

requirements on the system. Furthermore, the designed system must have the

capacity to handle the demanding workload of these functions in normal

situations and in failure situations where a specified level of performance

7

Table 3.1-1. IAPSA II Major Control Functions

System functions

Manual control

Capabilities

Basic flight path control

Needed for:

SFL

Flutter control High speed ingress with stores FMC

Trajectory following Track optimized flight paths FMC

Wing camber control Optimized wing performance for FMC
mission segment

Trim control FMC

Inlet control Full supersonic capability FMC

Engine control SFL

Nozzle control Thrust vectoring/reversing FMC

Notes:

SFL: Safe flight and landing
FMC: Full mission capability

s

must be provided after faults. The specific reliability goals are that (1)

the system contribution to loss of aircraft probability will be less than

10-7 for a 3-hour flight, and (2) the system contribution to loss of

mission probability will be less than 10-4. The major control functions are

developed in more detail in the following sections.

Table 3.1-1 specifies the high-level capability provided by each major

control function. Two of the major functions, manual control and engine

control, are needed to allow continued flight to a safe landing. The rest

of the functions are needed to provide full mission capability. No attempt

was made during the reliability study to distinguish lesser or intermediate

levels of mission capability. The effects of system element failures and

combinations of failures were categorized in terms of the three system

failure conditions: safe flight and landing (SFL), fully mission capable

(FMC), and unsafe.

The major control functions have specific sensing and actuation

requirements. These requirements are shown for each of the major control

functions in figures 3.1-1 through 3.1-8. The figures also list the

required cyclic execution rate derived in the function development effort

documented in reference 1. The major control functions were decomposed

into subfunctions based on this information. The resulting subfunction

definition and data transfer details are presented in the following two

subsections.

3.1.1 Derivation of Subfunctions

The IAPSA II functional design was developed in more detail by decomposing

the major control functions into subfunctions. The design at the

subfunctlon level identifies the sensor and actuator redundancy management

processes. The detailed development was based on several ground rules. A

major design ground rule is the sharing of sensors and computing processes

among the major functions. If more than one function requires a particular

computed parameter_ it is computed only once.

9

Body pitch rate

Right and left wing
acceleration
(outboard, mid,
inboard)

Flutter suppression

(100 Hz. 10 MSEC)

__._ Right and left
trailing edge flaps

Right and left
--- flaperons
--(outboard, inboard)

Figure 3. I- I. FlutterControl Function

10

Body accelerations
(normal, lateral)

Body rates
(pitch, roll, yaw)

Attitude _====_b
(pitch,roll)

Angle of attack,
angle of sideslip

Pilot commands
(pitch, roll, yaw)

Manual control

(50 Hz, 20 MSEC)

,_=_=._Right and left
canard commands

Right and left
rudder commands

Right and left

•=,_ flaperon commands
(inboard and
outboard)

._.._ Nosewheel
commands

Thrust vector

_l_command
(nozzles)

Maneuver

Figure 3.1-2. Manual Control Function

11

8ody normal
acceleration

Dynamic
pressure

Mach
number

Pilot's flap
command

Wing camber control

(50 Hz. 20 MSEC)

Right and left leading
edge flap commands

Right and left

trading edge flap
commands

Right and left flaperon
commands (inboard and
outboard)

Figure 3.1-3. Wing Camber Control Function

12

Body accleration
(normal, lateral,
longitudinal)

Body rates
(pitch, roll. yaw)

Roll angle,
heading angle

Vertical

acceleration

Pitch attitude

rate

Altitude.
altitude rate

True airspeed,
math number

Trajectory following

(20 Hz. 50 MSEC)

Left and right
canard command

Left and right
rudder corn mand

Left and right
flaperons command
(inboard, outboard)

Nosewheel comma nds

Thrust corn mand

Th rust vector
command (nozzles)

Maneuver anticipat=on

(engines, inlets)

Figure 3. I-4. Trajectory Following Function

13

Right and left
trailing edge flap
position

Right and left
flaperons position
(IB&OB)

Right and left
rudder pos=tion

Rtght and left
canard position

Right and left

nozzle flap
positions (upper
and lower)

Pilot's trim

commands (pitch,
roll. yaw)

Trim controller

(10 Hz, 100 MSEC)

Right and left

trailing edge flap
commands

Right and left
flaperon corn m ands
(inboard and
outboard)

Right and left
rudder commands

Right and left canard
comands

Right and left
nozzle flap

commands (upper
and lower)

Figure 3. I-5. Trim Control Function

14

Angle of attack.

angle of sideslip

Math number, static
pressure, dynamic
pressure

inlet normal shock
pressures (total.
static)

Inlet duct static

pressure

Maneuver

anticipation (manual

control, trajectory
following)

Inlet control

(100 Hz. 10 MSEC)

Right and left inlet

ramp commands

Right and left bypass
ring commands

Figure 3. I-6. Inlet Control Function

15

Pilot's thrust
commands

Mach number

Fan face conditions
(total temperature.
total pressure)

Rotor speeds (fan,
high press =======_

compressor)

Fan turbine inlet
temperature

Engine pressures
(main burner,
afterburner)

Fuelflowrate

Maneuver
anticipation (manual
control, trajectory
following)

Thrust command

{trajectory following)

E ngine control

(25 Hz, 40 MSEC)

Figure 3.1-7. Engine Control Function

Main fuel metering
====='=_ commands

Afterburner fuel
metering commands

(5 per engine)

Main fuel shutoff
commands

Afterburner fuel

shutoff commands
(5 per engine)

Fan guide vane
commands

Corn pressor guide
=====_ vane commands

Nozzle area command

16

Thrust vector
command (manual,

trajectory)

Area command

(engine)

Nozzle control

(25 Hz, 40 MSEC)

Convergent nozzle
commands

Nozzle flap commands
(upper and lower)

Figure 3.1-8. Nozzle Control Function

17

The shared elements must satisfy the requirements of all dependent

functions. This means that a shared sensor must have adequate performance

and adequate failure protection for its most critical user. For shared

computing processes, the most demanding function defines the failure

protection requirement and also sets the cyclic execution rate. For this

study, the rate used for all derived subfunctions and sensor and actuator

signaling is based on the fastest control function. Detailed control law

performance analysis might show that some of these rates can be relaxed;

however, because control law design and analysis is beyond the scope of the

contract, this possibility was not investigated.

The resulting central computing

figures 3.1.1-1 through 3.1.1-15.

subfunctlons are presented in

The first group of figures (3.1.1-1 through 3.1.1-8) are organized by major

control function. The sensor management computing subfunctlons shown

perform the redundancy management for sensor failures. The process

provides parameter estimates to all using functions. The actuator

management functions shown on the figures have two purposes: first, they

combine actuator commands from all control law functions that share the

control surface or device; second, they perform any necessary central

actuator redundancy management. Failure protection details are covered in

section 3.3.

The next two figures (3.1.1-9 and 3.1.1-10) detail the inertial data and

air data sensor processing subfunctions. Both processes have subfunctions

that execute at different rates to support different users. Air data

computing is divided into two rates. The fast rate provides the sensor

redundancy management and the computing needed by the inlet control

function. The slow rate provides the redundancy management functions for

the rest of the sensors and calculated variables needed by the trajectory-

following function. Inertial data has a fast subfunction that does some

redundancy management and estimation necessary for the flutter law. The

rest of the inertial data processing can be done at a slower rate. Note

that these figures only show the interfaces for the integrated control

functions. In a complete system, air data and inertial data are also

needed by the pilot display functions of the pilot-vehicle interface.

18

Wing
accelerometers
(18)

100"

Win_
accel
SM

100
11".......... "1

I

I

8ody i
I,

rate
SM _

I

I

A w

Q

y

100

Flutter

Law

100

I

I

I

I Flaperon
! AM
I

100
r'- --"

w I

I

J TE flap
i AM
I

I

I I

I !
• . ..a

Subfunction directly associated with major function

Subfunctlon associated with other major function

Update rate (Hz)

Figure 3. I. I- 1. Flutter Subfunctions

19

Pitch stick pos (4)

Roll stick pos (4)

Rudder pedal pos
(4)

5O

Pilot
command

SM

....... !_oq.

Body
rate
SM

....... s_o.

Body
accel

SM

L J

S0
r "I
I I

I I
i Inertial
I calc i
I I

L J

100
r "1
i i

Fast air
m data, i
, SM I
L J

v

P,Q,R

AOA, AOS

50

Manuallaw

5O
r "1
I I

I
,_ m Rudder i
m'r]' AM I

I I

L J

lOO
r "1
i i

i

F'_I AM m
I I

L J

50
rQ

i

b= I, Nosewheel
Ym AM

I

L

50
r 1

Maneuver m

CMD _ _I Pitch tI
I coordin. =•
I I

L J

25
I" "1

Maneuver ! i

anticipation _ _ Engine i

I I

L J

lOO
r

Maneuver i

: Inlet
anticipation _._ i law

I

L

Figure 3.1. I-2. Manual Control Subfunctions

2O

Lever
position (3)

SO

Flap
command

SM

50
r !

!

!

Body n
accel I

SM !
I

I

L_ J

100

!

!

Fast air !
data]
caic m

!

I

AZ

M,a

y

m=

v

Actuator pOS(4)

Actuator status (4)

5O

Camber

Law

v

b.= LE
,_ flap

AM

SO,, Actuator

CMD (2) =.=
m_

Actuator

mode (2)==
p,_

100
r I

!

I

! TE
,= n flap
vl

! AM
I

!

lOO
rio

I

I

I

== ! Flaperon
I AM
I

I

I

L__ ,--J

Figure 3.1. I-3. Camber $ubfunctions

21

5O
I" -1

I I

I Body I
* accel :
! I
i SM ,
L J

100
r "1
i I
I Body I

rate, i
I SM =
I. J

5O
. "1

I

inertial i
calc i

I

........ /

20
r"

i

, Slow air
m data
!
, calc
L J

100
r "1

i t

* .Fastair *
data :

I I
= calc I

L j

Ax, Ay, A z

y

P,Q,R

H, H, VT i._

M

2O

Traiect°rY,aw,

SO
r" "1

I I

,_ i Rudder a
I I

vl AM *
I I

L J

100
r 1
i i

i -._,_,,=lan°r^nt! I

v= AM !
I I

L J

50
I" "1

I I

I! Nosewheel
r ll AM !

I I

L J

Thrust CMD, 25
maneuver r "1

anticipation_ : _ _: _ ==
• cng,n_ i

r i law i
I I

I. J

50
Maneuver r "1

I I

CMD ..= I! Pitch I
I coordin. !
I I

L J

100
r"

i

: Inlet
! law
I

L J

Maneuver
anticipation

Figure 3. 1.1-4. Trajectory Subfunctions

22

Pitch trim
CMD (3)

Roll trim
CMD(3)

Yaw trim
CMD (3)

II.=r

r

10

Trim
command

SM
I _ I Trim

law

10,

d
qll

r I I

Surface pos (2) i TE flap man. ='

I I

100
e.- -,i

v I

Surface pos (4) I° Flaperon man. i
, I
: I
L= -==

.d

50

s=,,_ q I

r_l I

Surface pos (2) ii Rudder man. i,

: i

Trim CMD

SO
e.o "_

I I
I I

' Pitch coordin, a
hL=l I

• =o "J

Figure 3.1. I-5. Trim Subfunctions

23

100
I I
j Fast ,
t air data '
t SM t
I I

SO
f. -!

I I

I I

t Manual law '
I !

! !

I I

I I

m, Fast t
t air data i
t calc i
I I
k.a

25
i- -i
I I

I I
t Fan face i
t SM I
I I

AOAo AOS

M, Ps, dl

Ps, M

PT2

Inlet
pressures

(6)

r

y

v

r

100

Inlet
law

Actuator _ I

pos (4) _!

Actuator _ J

status (4),_

PTNs T Ramp

PSNs pos
PSo

10(

Inlet Ring
sensor pos

SM _'_ -j
Actuator _ I

status (2)_

Inlet
ramp
AM

IO0
Ramp

,,.._ actuator
CMD (4)

_Fail safe
CMD (4)

100

,1 Actuator
CMD (2)

"_ Fail safe
CMO (2)

Figure 3. 1.1-6. Inlet Subfunctions

24

Z_rottle pos

Fan face

pressure

Tern p

Rotor tach

Pressure

Temp

2S

PilOtsMthrust J

25
I

Fan face I pT2,

5M]
25

TTz

lit

Engine
law

I N1, N2, PT4,

PT6, FTIT

25

Ih.-

ill

Y

Y

100

I

Fast air ! M
data talc ;

I

L J

50
F 1
I _ Maneuver
I I
m Manual , anticipation
I law i
I I

L J

50
r 1 Thrust cmd.,
i I maneuver

I TraiectorYfawi!antioI)ation
I I
L J

25

i i

Actuatorl:)O$(2) Iv,,_.

Actuator m_l_'_l _ Actuator
status(2) _ Main fuel cmd (2)

valve man.

_._j S/O device(2)

Actuator

¢_os(_0) "_ 2S

Actuator

Actuator _ A/B fuel cmd(10)

status(10)-_lV I valveman.
S/O device

r _ (10)

Actuator _

>os (2)
25

Actuator

Actuator Fan guide cmd (2)
status (2) vane man,

Fail safe
r cmd (2)

Actuator

(2) _ 25

Actuator
Actuator Compressor cmd (2)
status (2) guide vane

man.
Fail safe

r cmd (2)

Aj cmd

5O

!

m NOzzle
r 1I man.

I

L J

Figure 3. 1.1-7. Engine Subfunctions

25

25I'- -'1I II I
m Engine :
i law ,
I !

I _.1

Aj cmd

5O
r "1
i i STy crnd
' Pitch 'iI

I coordln, i __TVpos
I I_,m

L J_'_m

m_

v
Nozzle
man.

5O

Figure 3.1. I-8. Nozzle Subfunctions

Actuator cmd (6)
pv

Fail safe cmd (6)

Actuator pos (6)

Actuator status (6)

26

Gyros (8)

Accelerometers

IO0

Body rate
SM

SO

Bod_jccel

P,Q,R

Ay, Az

P.Q.R

100
r-

i

i Flutter
I

_l I law

I -J
50

r "1
I I

Manual iI
law

I I
J

Ax, Ay, Az

Inertial
calc

SO

h. VV

PoQ, R 20
I I

I

Ax, .Ay, Traiectory ,
law i

I I

I. J
SO

r"......... "1
I I

AZ I Camber i'
law i

I I

I- J

Figure 3. I. 1-9. Inertial Subfunctions

2o
r -I
I !

SIow air data wI
calc

I I

I. J

27

Air flow _._[

vanes (8)

Air press (8)

,oo
Fast air data

SM _

2O

i S,owairdata___,
A,,temp(2)_ <al._____J !

......... -50 I
Inertial *

I

law i

_1

AOA, AOS

AOA, AOS

PTi, Psi,

AOA I, AOS I

50
r"......... 1
i I

='- ! Manual m
Y ; law ii

I I

L J

100
r

i

* Inlet
_', law

I

[

T M

(_, M, Ps

/ _0o

' talc

/ Ps'M

20

.. ;i i MSlow air data

Vy calc h, t:1,VT

25

I

,= I Engine
Y II law

I

Le

SO
I- -I
I i

i
I Camber i
: law i
I I

I_I

100

I

i Inlet sensor
_.i| SM

I

L J

20
r'

h,._l

i,,vl
i Traiectory

==, law

YL

Figure 3.1.1-10. Air Data Subfunctions

28

5O
I- "1
t ! Maneuver cmd

|
t ManualI w
, law t
t I
I. J

20
r -i

'_Maneuver cmdI m_
t Trajectory _ v
t law t
I I
L J

10
r "1
i I Trim cmd
t Trim lt
t law ,
I t
l- J

lb..

Y

5O

Pitch coordin.
law

Figure 3.1.1-11.

Actuator
pos(8)

Actuator
status (8) v

8CANpos

8CANcmd ...
Iw,

Canard
man.

5O

_ Actuator cmd (4)Actuator mode (4)

5O

_"v cmd h,...J
v ' Nozzle

6TV posd • man,
l

L -I

Pitch Coordination Subfunctions

29

100
.......... "1

I

Flutter

law I I

Manual
law

I.

Actuator
pos(16)

Actuator
status (16)

100

Flaperon _ Actuator cmd (8)

management _ Actuator mode (8)

Y

' Surface pos (4)

...... jo
!

!

T_im I_..law
!

L J

SO
r" "1
I

I
I Camber
i taw
I

L I

Ir 2o

,
! I

L ,J

Figure 3.1. I- 12. Flaperon Management

3O

100
r" 1
! I

I I

o Flutter
! law ' I

' :L
50

r- "!

! !

i Camber i
I I
i law i
I I

I,. J

r 'U
I

! Trim iI

i law i

L, J

Actuator
pos(81
Actuator
status (8)

Uu=

pr

Figure 3.1.1-13.

y

v

IO0

TE flap _ Actuator cmd (4)

B

management _ Actuator mode (4)

Surface pos (2)

TEFlap Management

31

SO

I

Manual

law i _

I. -I I

20

Traiectory
law

I.J

dr

I Trim
I I

t law i
t '¢1
LJ

Actuator
pos18)
Actuator
status (8)

Bh_

Y

5O

Rudder
management

Surface pos (2)

Figure 3.1. I- 14. Rudder Management

Actuator cmd (4)

Actuator mode (4)

32

5O
r -1
I I

I Manual

: law _ i

2O
p "1
I !

TraiectoryI 1

t law !
I I
L J

Actuator
pos14)
Actuator
status (4)

so
/

Nosewheel _, Actuator cmd (2)

management _._ Actuator mode (2)

Figure 3. 1.I-15. Nosewheel Management

33

A pitch coordination subfunction handles the blending of control effectors

for longitudinal axis control. This allocation is primarily one of

convenience. It provides a coordinated interface for the pitch control

surfaces and the vectored nozzle. Another integrated control design

alternative might signal the actuator devices directly, without the need

for an explicit coordination process.

The subfunction figures conclude with the actuator management subfunctions.

These figures show which major functions interface to each set of

actuators.

The candidate architecture definition from reference I allocated the

IAPSA II computing functions to the flight control computing site and to an

engine control computing site for each engine. The resulting

stalghtforvard allocation of computing subfunctions and associated update

rates are shown in tables 3.1.2-1 and 3.1.2-2. The pitch coordination

subfunction responsible for pitch control blending is performed at the

flight control site. The engine control site performs the nozzle actuator

management subfunctlon. Note that the execution rates for the slower

functions at the flight control site have been adjusted upward. By

maintaining an integer multiple relationship between all rates, potential

problems associated with tasks drifting in and out of phase with each other

are avoided. The figures show the computing allocation for the functions

of the candidate architecture to be discussed in this section and section 4

as well as the refined configuration discussed in section 5.

In addition to division by computing sites, the subfunctlons are also

organized into units by rate group. That is, all subfunctlons executing at

one site at the same cyclic execution rate are treated together. This has

performance implications in terms of decreased overhead processing

necessary for sequencing and control of the application computing, which

are discussed in section 4. The results of this grouping are special data

transfer requirements incorporated into the system design. Note that these

are examples of requirements that are due to the way the system is

implemented.

34

Table 3. 1.2-1. Computing Allocation - Flight Control

100 Hz 50 HZ 25 HZ 12.5 Hz

Wing accelerometer SM Pilot command SM Trajectory law 1 Trim command SM

Flutter law

Body rate SM

Manual law
i

Camber law

Fast air data $M 1 LE flap AM

Fast air data calculationt Body accelerometar SM

Flaperon AM Inertial calculation

TE flap AM Pitch coordination

Cona"rd AM

Rudder AM

Nosewheel AM

Flap command $M

Slow air data $M 1 Trim law

Slow air data calculation _
, ,,, , , ,, , ,_

SM - Sensor management
AM -Actuator management

1 - Reference configuration

35

TaMe 3. 1.2-2. Computing Allocation - Engine Control

100 Hz 50 Hz 25 Hz

Inlet SM Nozzle AM Pilot thrust SM

inlet law Fan face SM

inlet ramp AM Engine SM

inlet ring AM Fuel flow SM

Fast air data SM 2 Engine law

Fast air data z calculation Mmn fuel AM

Afterburner fuel AM

Fan guide vane AM

Compressor guide vane AM

Trajectory law 2

Slow air data SM 2

Slow air data calculation 2

Notes:

SM - Sensor management
AM - Actuator management
2 - Refined configuration

36

3.1.2 Derivation of Data Transfer

Any data transfer between functions in different computing sites must take

place on the intercomputer (IC) network. Intercomputer data transfer takes

place between independent computers. A computer with data must first gain

access control of the network and then transmit its message. The receiving

computer processes the message based on its priority and the current

processing workload. A key assumption is that the corresponding time delay

is acceptable to the control law performance. As discussed in section 4,

IC network operation was not modeled in this study.

Data transfer among subfunctions in different rate groups at the same site

will generate intertask activity. The integrity of such transfers will

undoubtedly be protected by some operating system kernel or executive

system service. This protection will require some overhead processing and

corresponding time delay. The operation of these features was not modeled

in this study.

The activity in these two categories resulting from the candidate system

computing allocation is presented in table 3.1.2-3. The data in this table

are listed under the major subfunction that is the data source.

3.2 Reference Configuration Layout

The physical configuration of the IAPSA II candidate architecture is shown

in figure 3.2-1. The components are arranged in three major groups: (1) a

flight control group, (2) a right engine control group, and (3) a left

engine control group. The candidate makes extensive use of advanced

information processing system (AIPS) fault-tolerant system building blocks.

These are the fault- and damage-tolerant IC networks, input/output (I/O)

networks, and FTP. These elements are described in detail in reference 1,

appendix A.

The flight control group consists of flight control sensors and actuators

connected to a quadruple-channel FTP via two I/O networks. The FTP

37

Table 3. 1.2-3. Data Transfer Activity by Source

Major subfunction (rate) IC activity Intertask activity
i

Manual law (50) Maneuver anticipation Flaperon commands

Camber law (SO) TE flap commands
Flapperon commands

Trajectory law (25) Thrust commands

Maneuver anticipation
Rudder commands 2

Fla peron commands 2
Nosewheel command 2
Maneuver command 2

Rudder commands I

Flaperon commands 1
Nosewheel command
Maneuver command i

Trim law (12.5) TE flap commands
Flaperon commands
Rudder commands
Pitch trim command

Engine (25) Throttle position 1 Nozzle area commands

Nozzle (50) Thrust vectoring position

Inertial (100/50) Body rates 2
Body accelerations 2
Roll angle 2
Heading 2
Pitch attitude rate 2
Vertical acceleration 2

Flight path acceleration 2

Body rates

Body accelerations
Roll angle I
Heading 1
Pitch attitude rate 1
Vertical acceleration I

Flight path acceleration _

Air data (100/25) Angle of attack 2 Angle of attack 1
Angle of sideslip 2 Angle of sideslip 1
Mach Mach

Dynamic pressure Dynamic pressure
Static pressure 1 Static pressure

Pitch coordination (50) Thrust vector command

Flaperon AM (100) Flaperon position

TE flap AM (100) TE flap position

Rudder AM (50) Rudder position

Reference configuration
2 Refined configuration

38

I Sensors/actuators J I/O J Sensors/actuators]
networks

Sensors/]actuators

2

t/O
networks

CH 1

CH 2

CH 3

CH 4

CH 1 IC
CH 2 network
CH 3

Flight FTP Icontrol

CH 1

CH 2

CH 3

Right engine
control FTP

networks Sensors/ Iactuators

F_gure 3.2-1. Reference Configuration Overview

p

39

channels are physically dispersed for damage tolerance. Each of the two

engine groups controls the operation of one of the two propulsion systems.

An engine group consists of the sensors and actuators of one propulsion

system connected to a triple-channel FTP through two I/O networks. The

three groups are interconnected by an IC network Joining the three

computing sites. The following two subsections present details about the

flight and engine groups from an I/O network point of view.

3.2.1 Flight Control IIO Netvork

One of the two flight control I/O networks is shown in figure 3.2.1-1.

Half of the flight control sensors and actuators are connected to network

I; half are connected to network 2. The sensors and actuators interface

the network through device interface units (DIU). The DIU provides signal

conditioning and conversion for the devices and handles the network

communication protocol. Each DIU connects to a single network node. The

lack of cross-connectlon between sensor and actuators, nodes, and DIUs

alleviates any fault containment concerns. This form of "brickwalled"

system organization introduces an element of dependency into the system,

which will be evaluated in the reliability analysis.

The I/0 network consists of a mesh of 18 nodes connected by full duplex

point-to-point links. The nodes can be commanded to turn links on or off.

In operation, enough links are turned on to create a path from the FTP to

all nodes and DIUs in the network. The remaining links act as spares.

Each network node in the candidate architecture is connected to three other

network nodes. This means that two-thlrds of the links are active and the

remaining one-third are spare during operation. With three connections, at

least three faults are necessary to destroy communications with a good node

and its attached devices.

The flight control I/O networks are connected to the FTP with three root

links, each connected to a different channel. During operation, only one

of the root links is active, and the others act as spares. With three root

links, at least three faults must occur to isolate an entire network of

sensors and actuators.

4O

0

Z

0

0

t

0

i

41

The redundant flight control sensors and actuators are spread evenly across

the two networks and the redundant DIUs. The specific assignment of these

elements is shown in table 3.2.1-1. The safety-crltlcal flight control

sensors are primarily quadruple redundant. The skewed body motion sensors

are an exception because a different redundancy level is required to

achieve the same degree of failure protection. A total of eight were

needed in the IAPSA I system due to Interconnectlon dependencies. Eight

were used in the candidate architecture because a similar situation exists

for IAPSA II. The mlsslon-crltlcal flight control sensors are triple

redundant. The flight control surface actuators have a dual redundant

control channel arrangement. Each actuator channel is connected to a

different network and is capable of full operation. If coeuaunlcations to

one channel of the actuator are interrupted for any reason, control can be

maintained through communications on the unaffected network. Failure

protection details for these elements will be provided in section 3.3.

3.2.2 Engine Control I/O Network

The two I/O networks for one propulsion system are shown in figure 3.2.2-1.

Like the flight control arrangement, the propulsion control sensors and

actuators are connected half to one network and half to the other network.

The devices are also connected in a "brlckwall" manner, with one device

connected to only one DIU, which in turn is connected to only one network

node and therefore one network.

The engine control networks each contain four nodes, and because the

network is a system building block entity, its operation is identical to

the flight control networks. Like the flight control network, each network

node is connected to three network links. Unlike the flight control

network, each network is connected to the FTP through two root links, which

means that an entire set of sensors and actuators can be isolated after two

failures.

The candidate system requires a lower level of failure protection for each

propulsion system because safe flight and landing is possible after los_ of

42

Table 3.2. 1-1. Sensor�Actuator Connection - Flight Control Networks

Devices
I i

Body accelerometers

Redundancy

2

2
2
2

DIU/node ID

$1

S2
S3
$4

Body gyros 2 s 1 1
2 s2 1

2 s3 2
2 54 2

Angle of attack 1 S 1 1
1 S2 1
1 S3 2
1 $4 2

Angle of sideslip 1 S 1 1
1 52 1
1 S3 2
1 $4 2

Static pressure 1 S 1 1
1 $2 1
1 S3 2
I $4 2

Total pressure I S 1 1
1 S2 1
1 $3 2
I S4 2

i

Total temperature 1 S1 I
1 S3 2

Pitch stick 1 CP1 1

1 CP2 1
1 CP3 2
1 CP4 2

Roll stick 1 CP1 1
1 CP2 I
1 CP3 2
1 CP4 2

Rudder pedal 1 CP1 1
1 CP2 1
I CP3 2
1 CP4 2

Left throttle '1 CP2 1

1 CP3 2

Rig ht throttle 1 CP 1 1
1 CP4 2

Flap lever 1 CP1 1
1 CP2 1
1 CP3 2

i

Pitch trim 1 CP2 1
1 CP3 2
1 CP4 2

ROll trim 1 CP1 1
1 CP3 2
1 CP4 2

Yaw trim 1 CP 1 1
1 CP2 1
I CP4 2

NW

43

Table 3.2. 1-1. Sensor/Actuator Connection - Flight Control Networks (Continued)

Devices Redundancy OlU/node ID NW

Left canard actuation 1 CDL1 1
1 CDL2 2

Right canard actuation 1 CDR1 1
1 CDR2 2

Nosewheel actuation 1 N I 1
1 N2 2

Leading edge actuation 1 LER 1
1 LEL 2

L outboard flaperon actuation 1 OFL1 1
1 OFL2 2

L inboard flaperon actuation 1 IFL1 1
1 IFL2 2

L TE flap actuation 1 TEL1 1
t TEL2 2

L rudder actuation 1 RL1 1
1 RL2 2

R rudder actuation 1 RR1 1
1 RR2 2

R TE flap actuation 1 TER1 1
1 TER2 2

R inboard flaperon actuation 1 IFR1 1
1 IFR2 2

R outboard flaperon actuation 1 OFR1 1
1 OFR2 2

L outboard wing accelerometers 1 OFL2. 2
1 OFL1 1
1 IFL2 2

L mid-wing accelerometers 1 IFL2 2
1 IFL1 1
1 TEL2 2

L =nboa rd wing accelerometers 1 IFL 1 1
1 TEL2 2

1 TEL1 1

R inboard wing accelerometers 1 TER2 2
1 TER1 1
1 1FR2 2

R m id-wing accelerometers 1 TE R1 1
1 1FR2 2
1 1FR1 1

R outboard wing accelerometers 1 1FR1 1
1 OFR2 2
1 OFR1 1

44

Network 2

CH 1

CH 2 Inlet Engine Nozzle

CH 3

Left engine
control FTP

Network 1

©
©

Figure 3.2.2-1.

Device interface unit (DIU)

Node

Left Engine I/0 Network Layout

45

one of the two engines. The specific assignment of the redundant sensors

and actuators for one propulsion system is presented in table 3.2.2-i.

Notice that most propulsion system sensors are dual redundant. An

exception is the engine core sensors that are covered by an analytic

redundancy management scheme. The propulsion system actuators are dual

channel. Each actuator channel is connected to a different IlO network

llke the flight control actuators. More detail on the failure protection

for these elements is presented in section 3.3.

3.3 Reference Configuration Failure Protection

Failure protection is the central issue in the design of flight-crltical

systems. To provide the necessary levels of safety and mission

reliability, the system must be able to tolerate faults without affecting

the operation of its critical functions. This capability is provided by

redundancy management processes that are responsible for the detection and

identification of system element faults and any necessary reconfiguration

of functions to maintain safety or mission capability. This section will

discuss the failure protection assumptions for the candidate system.

Elements will be discussed by functional category. The primary function of

each candidate configuration element will be used to group it in one of

four major categories: computing, data transfer, sensing, or actuation.

Before presenting these assumptions, function migration will be discussed.

A key failure protection issue for the candidate architecture is function

migration. This is a high-level scheme that can be used on the group level

to provide failure protection for the computing functions. In an AIFS

system, function migration is a nonroutine change of computing assignments

for the different system computers. An external stimulus such as a fault,

a change in mission phase, or crew direction is necessary for function

migration. An early design decision was to not implement this capability

for failure protection in the candidate architecture. The capability was

judged to be relatively immature for the time frame of the IAPSA II

application.

48

Table3.2.2-1. Sensor/Actuator Connection- Engine Control Networks

Devices Redundancy DIUInode ID
i ii

1 INL1
Upper ramp actuation 1 INL2

Inner ramp actuation 1 INL1
1 INL2

1 INL1
Bypass ring actuation 1 INL2

1 INL1
Ouct static pressu re 1 INL2

1 INL1
Normal shock total pressure 1 INL2

1 INL1
Normal shock static pressure 1 INL2

1 NOZ1
Convergent nozzle actuation 1 NOZ2

Upper nozzle flap actuation 1 NOZl
1 NOZ2

1 NOZ 1
Lower nozzle flap actuation 1 NOZ2

Fan face pressure 1 ENG 1
1 ENG2

1 ENG1
Fan face temperature 1 ENG2

1 ENG1
Fan speed 1 ENG2

Corn pressor speed 1 ENG 1

1 ENG1
Fuel flowmeter

,J

Burner pressure

Fan turbine inlet temperature

Afterburner pressure

Fan guide vane actuation

Corn pressor guide vane actuation

1 ENG2

1 ENG2

i ENG1

1 ENG2

1 ENG1
I ENG2

1 ENG1
1 ENG2

1 ENG1
1 ENG2

ENG1
ENG2Fuel metering valve actuation

Afterburner fuel metering valve actuation (each of 5) 1 ENG1
1 ENG2

Afterburner light off detector 1 ENG I
1 ENG2

1 ENG1
1 ENG2

.1 ENG1
1 ENG2

L , ,,

Main fuel SIO device

Afterburner zone fuel S/O device (1 of 5)

47

Function migration imposes very challenging requirements on a system

performing flight-critlcal functions with critical timing needs. The

function must be reliably terminated at one computing site and started at

another with minimum delay. Performance transients must be minor.

Additionally, communications responsibility for the associated sensors and

actuators must be transferred to the new site with minimum delay. For the

new site to fulfill this responsibility, there must first be a physical

path from the new site to the appropriate networks. Second, all the

software definitions necessary to pick up the periodic communications with

the devices must be resident at the new site. Finally, the new site must

be able to perform redundancy management on the networks. The critical

software elements are AIPS system service functions: system manager, I/O

services, and I/O redundancy management.

The decision to include function migration would necessitate changes to the

candidate architecture. Spare links would be needed between the computing

sites and the networks of the different groups to support the alternative

communications capability. The I/O networks might be operated differently,

for example, as regional networks instead of local networks, if function

migration was a possible reconflguration action. However, because of the

uncertain availability of this technique, the candidate system was

evaluated with no function migration capability.

3.3.1 Application Computing

The first functional category for the failure protection discussion is

application computing. The application computing functions are centered on

control laws that provide integrated flight and propulsion control

capabilities. These control laws run on the FTP general-purpose computers.

A key feature of the AIPS system is that application software functions can

be written as if they execute on a perfectly reliable single channel

computer. The AIPS system hardware and software elements provide

protection from computing element failure.

The FTP operating concept has all redundant channels executing exactly the

same software in instruction synchronism. All of the computed outputs are

voted to ensure bit-for-bit agreement. An unsuccessful vote points out a

48

faulty channel. All inputs go through a byzantine fault-tolerant data

exchange process to ensure that each good channel is operating with exactly

the same data. Special fault-tolerant clock (FTC) hardware keeps each

channel in synchronization, while special data exchange (DX) hardware

allows for fast, reliable exchange of interchannel data.

A key element of the FTP concept is the AIPS system software FDIR process.

FDIR has the overall responsibility for FTP redundancy management. The

portion of FDIR that executes most frequently is called Fast-FDIR. This

process checks every cycle for indications of output disagreement and

ensures that all channels are in instruction synchronism. When necessary,

processor interlock hardware is used to disable faulty channel outputs.

FDIR programs running in background perform self-tests on the channel

hardware. A watchdog timer monitors the periodicity of the channel cyclic

execution. More detailed information about the FTP failure protection is

provided in reference I.

Two good FTP channels are needed for operation when a guaranteed shutdown

is required for a subsequent channel fault. Two are necessary so that

comparison between channels can immediately detect the fault. The FTP

building block has the ability to be safely reconfigured into a special

simplex operating mode if the failures can be rapidly identified by self-

test. This ability allows for continued operation for those which do not

cause a loss of synchronization. However, the capability to degrade to

simplex operation was not evaluated in the candidate architecture. Based

on this decision, the quadruple flight control computer provides fail-

operational/fail-off failure protection capability for the safety-critical

functions. Similarly, the engine computer provides fail-operational/fail-

off capability for each propulsion system.

3.3.2 Application I/O Activity

The next functional category is data transfer. Sensor and actuator data

transfer takes place on the I/0 networks. As previously mentioned, not all

of the links in the mesh network are active during operation. During

system startup before flight, two out of three mesh network links are

49

activated to form a virtual communications bus. This virtual bus provides

a path between the FTP and all good nodes and DIUs. Responsibility for

maintaining a communication path to all good devices during operation rests

with the I/O redundancy management process, which is a software building

block element of the AIPS system services software.

Network data transfer involves many of the FTP hardware and software

elements. These are shown in figure 3.3.2-1. The application process

requests I/O activity from one of the AIPS system service software

processes, which primarily resides on the lOP coprocessor. The network

activity called for by the I/O request consists of a sequence or chain of

transactions. Each transaction involves a command message addressed to a

specific DIU followed (usually) by a response message from that DIU. Each

chain is setup for execution, initiated, and post processed by the services

software on the IOP. Once initiated, the chain runs without IOP

involvement. The network interface (NI) hardware sends each command

message and receives each response message until the chain sequence is

complete.

The NI hardware, which transmits and receives all chains, detects and logs

network protocol errors. Missing response messages are caught by the NI

timer that sets a timeout interval for each transaction. The IlO services

process implements a chain timeout to detect faults that result in an

incomplete chain. The data transfer status information and all data

returned by the DIUs are distributed to all FTP channels by the I/O

services through the data exchange. The status information is analyzed by

I/O redundancy management and, when necessary, network repair action is

taken to restore communications.

Host network repair actions command nodes to enable or disable network

links using special command messages over the I/O network. The repair

strategy fundamentally consists of turning links on and off to isolate

faulty network elements and to provide an alternate data path to the

affected DIU(s). An example of this is shown in figure 3.3.2-2, where a

spare llnk is used to bypass a failed active link. The specific re-_ir

action must be based on fault indications available to I/O redundancy

5O

FTP !
channels i

Application
SW

II0 services
SW

iB
I-

I

I

I

:c

\

Data
exchange !

- - - -1 Network nodes
I
I

I
I

Figure3.3.2-1. I/0 Network Operation

51

• Spare link used to bypass failure

Figure 3.3.2-2. Link Failure Reconfiguration

52

management at the FTP. Because many faults have similar indications,

speclal chains are usually necessary before the repair activity to help

diagnose the fault. In some cases, the fault may not be identified except

by a process of ellmlnation during the repair sequence. Certain candidate

architecture faults, such as DIUs or nodes, will permanently disable the

directly connected sensors and actuators because no alternative path is

possible. The specific IlO network repair strategy assumed for the

candidate architecture is discussed further in section 4.

3.3.3 Flight Control Sensing

Host of the safety critical sensors listed in table 3.2.1-1 in section 3.2

were quadruple redundant to provide full operation after two like sensor

failures. Hisslon critical sensors are triple redundant to provide fail-

operational/fail-off failure protection for the misslon-critical control

functions. Voting processes executing in the FTP compare redundant sensor

readings to detect and identify sensor failures. These voting processes

have demanding false alarm, missed alarm, and failure transient performance

requirements. Sophisticated dynamic processes are used to meet these needs

for full-tlme critical operation. Distinguishing failures from normal

channel mismatches is a very challenging engineering task. As a result, a

significant failure recovery time is needed to react to a sensor failure.

Because a comparison process is used, only failure detection can be

accomplished when two sensors remain operational.

The skewed axis sensor readings are processed to provide estimates of the

three axis rates and accelerations. A sophisticated process compares the

readings for consistency in order to detect and identify sensor failures.

In this situation, four sensors are needed for the process to provide

failure detection capability. Five are needed to identify the failed

sensor.

All of the sensor redundancy management processes can use external

information to aid fault identification. Nhen data is unavailable to a

comparison process because of a known communication fault, operation can be

continued with a single remaining sensor (or three skewed sensors).

53

However, in this situation, the voting process is unable to detect a

subsequent sensor fault.

3.3.4 Flight Control Actuation

Eight primary surfaces provide basic flight path control. At least two of

the surfaces contribute most of the control moment for each axis. Pitch

axis control is provided by two canards. Two flaperons on each wing

control roll axis motion. Similarly, two rudders control motion around the

yaw axis. Secondary surfaces and devices include leading edge flaps,

trailing edge flaps, and nosewheel steering.

Each surface or device is moved by a dual actuator. The actuator is based

on a dual coil-dual monitored valve approach. Figure 3.3.4-1 shows the

configuration of the standard actuator. Most of the actuator components

are dual with the exception of the servodrlve and valve monitoring

elements. Two processors, each of which has the capability to drive both

control valves, close the actuator position loop. Position errors cause

control valve movement that routes hydraulic flow to one side of a dual

tandem power ram.

Local redundancy management is used to react to most failures. Special

monitor hardware detects most failures of the actuator position and valve

position sensors. When failures are detected, the other actuator processor

can take control. The actuator processor computes a model of the control

valve dynamics to detect valve failure. Valve failure will lead to bypass

of that side of the dual tandem ram and continued operation using the other

valve. A self-test process and watchdog timer hardware detect failures of

the actuator processor hardware. Detected failures result in control of

the surface by the other processor.

Some actuator failures may be missed due to a lack of coverage by the

monitor processes. As a last line of defense, the actuator management

process in the FTP generates a "safe" command for the surface when it sees

indications of an unresponsive surface. Undetected failures may lead to

force fight situations, seen as a stuck or slowly drifting surface. They

54

Proc Proc

Vlv

DTR

M Monitor Hyd Hydraulic system
Proc Processor VIv Control valve
SD Servo drive 8yp Bypass device
Co Coil DTR Dual tandem ram

Pos Position sensor

Figure 3.3.4-I. Surface Actuation - Reference Configuration

w

55

can also lead to a surface moving rapidly hardover if, for example, the

other actuator channel has been bypassed due to a previous failure.

Because it can deactivate an entire surface, the central process must

satisfy stringent false alarm requirements. It must correctly handle

anomalies occurring during normal operation or caused by failures in other

system elements.

The response to an uncovered failure is more time critical in the case of

an actuator that is controlled by a single channel due to a previously

detected fault. In this situation, the surface may be moving rapidly

hardover until the central process commands passive operation. This

condition sets the time response requirements for the central actuator

management process.

3.3.5 Propulsion Control Sensing

As previously described, most of the propulsion sensors are dual redundant.

For the candidate system, model-based redundancy management processes were

assumed to allow fail-operational/fail-off failure protection capability.

The specific approaches used for the different sensors are described in

this section.

It should be noted that a more detailed examination and definition of the

propulsion control concept was carried out during the refined configuration

evaluation. The concept and failure analysis described in this section

were reevaluated during that study. Shown here are the results of the

initial analysis. The results of more detailed evaluation are presented in

terms of changes to this baseline in section 5.

An inlet flow model identifies failures among the inlet pressure sensors,

fan face sensors, and inlet device position sensors. The model executes on

the engine control FTP using air data sensor information and engine fan

speed. It identifies the failed sensor of a pair and detects a second

like-sensor failure by looking for an inconsistency among the measurements

and the device positions. Loss of any of the required measurements will

deactivate this redundancy management process.

56

Throttle conmand sensor management uses the throttle setting of the other

engine to help identify sensor failures. The logic assumes that the two

engine cosmands will be nearly identical. When the logic indicates that

the final sensor of a palr has failed, the engine reverts to a flxed-thrust

operation. In this situation, or at any time the engine does not follow

commnds, the pilot can shut the engine down when conditions permit.

Redundancy management for the engine core sensors employs a sophisticated

algorithm described in detail in reference 2. The core sensors include:

fan speed, compressor speed, burner pressure, fan turbine inlet

temperature, and afterburner pressure. The analytic redundancy method

detects and identifies failures among the five sensor types to provide

fail-operational/fail-off capability. When measurements from a specific

sensor type are lost, the algorithm provides an estimated sensor value to

be used by the control law. In addition to the core sensor measurements,

the algorithm needs fuel flow, nozzle area, and fan and compressor guide

vane position measurements to perform its function. Some of the core

sensors are dual redundant to maintain failure detection capability after

communication element failures. Because the sensors are divided between

two node/DIUs, one failure can eliminate half of them.

The afterburner lightoff detectors, used in the staged control of the

afterburner, use a simple consistency scheme to identify detector failures.

The scheme is based on the commanded afterburner operating mode. When the

detectors disagree, the one consistent with the commanded operation will be

used while the other is declared failed. Similarly, a remaining detector

indicating uncommanded lightoff will be declared failed. If the remaining

detector fails to indicate lightoff when operation is commanded,

afterburner sequencing will be stopped.

3.3.6 Propulsion Control Actuation

All propulsion devices employ the same general actuation control concept

shown in figure 3.3.6-1. A propulsion actuator is basically a dual-channel

device incorporating fail-passive electronics. Each ehannel drives its

control valve based on the error between the position command from the DIU

57

1
Device interface u nits

BYp I
DTR

FPE

CO

VLV _'

BYP

SOL

POS

DTR"

HYD

Devices (per actuator)

Fail passive electronics 2.

Coil 2

Control valve 2

Bypass device 1

Engage solenoid 2

Position sensor 2

Dual tandem ram 1

Hydraulic system 2

*Active failure mode

Figure 3.3.6-1. Propulsion Actuation

58

and the position feedback sensor. The two control valves are mechanically

linked together; Each valve controls hydraulic flow to one side of the dual

tandem power ram. Either channel can engage the actuator through a dual

solenoid-operated bypass valve.

Generally, propulsion actuation element failures are detected using self-

test methods. Failures detected in the electronic elements cause one

channel to fail passive, which means it stops driving its control valve and

takes away its engage power from the bypass solenoid. Vhen both sides fall

passive, disengagement causes the device to move to a preferred fixed

position. The propulsion system operates at a degraded performance level

when one of its devices is in the fixed position. This will be further

discussed in section 3.4.

Failures that are not detected by the self-test methods result in

disagreement between the feedback sensors or force fight at the control

valve. This will be manifested by a stuck or slowly drifting propulsion

device. The actuator management process in the FTP detects this situation

and commands disengagement to force the device to move to its preferred

fixed position. Certain mechanical failures in the actuator will also be

detected by the central redundancy management. Mechanical jam of the

control valve will cause the device to move toward a hardover position

until it is disengaged; however, mechanical jam of the power ram, which is

an unlikely failure mode, will jam the device permanently.

A fuel flow model identifies metering valve position sensor failures and

fuel flowmeter failures. The model can identify the first failure of a

pair of sensors and detect the second failure to provide fail-op /fail-off

capability. Its operation is based on consistency between the valve

position and the measured flow.

The fuel handling portion of the system includes special fuel shutoff

devices where needed for additional safety. The fuel to each engine passes

through a dual device fuel shutoff valve. Either shutoff drive can

terminate fuel flow to the engine. This capability is used by the fuel

metering actuator management process as a last resort to protect against

59

hazardous overspeed or overtemperature situations. Additionally, fuel flow

to the afterburner incorporates dual solenoid zone flow shutoff valves.

Either drive can open the valve to allow zone flow that is modulated by an

afterburner metering valve. Flow to a specific zone is cut off when neither

solenoid drive is powered. Central RM commands fuel shutoff if continued

operation of a specific engine is hazardous, for example, if the thrust

vectoring and reversing devices won't move to a safe position.

In the next section, this detailed description of the candidate system will

be used to evaluate its key reliability characteristics.

3.4 Reliability Evaluation of Candidate

The candidate system performs functions that greatly enhance the mission

effectiveness of an advanced fighter. Two key measures were established

for this system to address the reliability specifications presented in

section 3.1. The first, safe flight and landing (SFL), is a measure of the

safety implications of the system design. Safe flight and landing

capability means that the aircraft can fly to a recovery airfield and land

safely. Aircraft operation may require the use of emergency procedures and

diversion to an emergency base. This reliability measure is based on a 3-

hour period, which is representative of a long-deployment mission.

The second measure, full mission capability (FMC), indicates the ability of

the aircraft to complete its mission. Full mission capability means that

the aircraft can continue to fly any of its possible missions after the

failure of a system element. The applicable redundancy management process

must automatically perform any necessary reconflguration so that continued

operation requires no special procedures and no significant performance

degradation. A 1-hour time period consistent with a combat mission is used

for numerical evaluation.

A key study assumption, implicit in most reliability evaluations, is that

all significant elements are fully operational at the start of the mission.

This implies that preflight system tests, necessary to guarantee correct

operation of all critical system elements, are implemented. Creation of

6O

these tests is another challenging task for flight-crltical systems. Most

successful approaches for ensuring integrity before flight rely heavily on

the redundancy management processes designed for use during flight.

Preflight test definition has not been addressed in this study.

The reliability evaluation process was accomplished in three phases. The

first phase is a functional failure analysis, undertaken to define how the

system fails. Next, an abstract model of the resulting failure behavior is

formulated and converted for input to a reliability tool. Finally, the

system loss probabilities are numerically computed and evaluated to

understand the particular system concept's strengths and weaknesses. The

failure analysis phase is described next.

The candidate system operation must be analyzed to understand how the

system fails. A combination of top-down and bottom-up techniques was used

in the failure analysis. Top-down techniques were used to classify and

group the failure conditions at different levels of the organization

hierarchy. Bottom-up techniques, based on failure mode effects analysis,

were used to identify the effects of an element failure on the next higher

level of system organization. As mentioned earlier, the two system-level

failure conditions of interest are loss of SFL capability and loss of FMC

capability.

The flight control portion of the system performs the functions organized

into the functional blocks illustrated in figure 3.4-1. Similarly, the

propulsion control functional blocks for one of the two systems are

presented in figure 3.4-2. The top-down technique determined the

significant operational states of these functional blocks by relating

system performance after failures within the blocks to the two system

failure conditions of interest. The goal is to identify those functional

block states which by themselves or in combination with the states of other

blocks leads to a loss of system capability.

The functional blocks were used to organize the system elements for the

failure analysis. Specifically, each element was assigned to a functional

block based on its primary function. Each element's failure effect is

61

I Pilot
command

sensing

Body motion
sensing

Airflow

sensing

I Wing
acceleration

sensing

I Flight control I _computing

Figure 3.4-1. Flight Control Functions

v

I Canard Jcontrol

t Flapemncontrol

t Rudder lcontrol

TE flap 1control

Nosewheel lcontrol

LE flap 1control

62

Inlet
sensing

Fanface]sensing

Engine core Isensing

Throttle t
command

sensing

___Ii Propulsion 11computing

Inlet]control

Vane
control

{ Icontrol

A/B fuel Icontrol

Nozzle
control

Figure 3.4-2. Propulsion Control Functions

63

determined by the resulting operational state of the functional block. The

process then can relate an element failure and the resulting redundancy

management action to an effect on the system operational capability through

the state of the functional block.

The failure effect ultimately depends on how the element is used by the

major control functions and the element failure mode. The basic failure

mode assumed in the analysis is loss of element function. The failure

analysis also considers possible active failure modes to see if any can

have a more serious effect on the system. Any significant failure modes

were included in the reliability models. The failure analysis must also

consider the performance of the redundancy management process that handles

the affected element. The current operating configuration is usually

important to the performance of the redundancy management. These processes

can perform imperfectly, failing to detect certain faults and incorrectly

diagnosing others.

3.4.1 Flight Control Group Failure Analysis

The failure analysis for elements in the flight control sensing functional

blocks was based on some standard assumptions and groundrules. The voting

processes used for sensor redundancy management were assumed to operate

perfectly. This means that no false alarms, missed alarms, or incorrect

identifications occur as long as good sensors outnumber bad sensors. W'hen

only two sensors remain (four for skewed sensors), it is assumed that the

process can detect that a failure has occurred but cannot identify which of

the remaining sensors is bad.

For safety-critlcal sensing elements, it is assumed that when the

redundancy level supports failure detection only, a subsequent sensor

failure causes loss of safety. However, in the same situation, if the

subsequent failure is loss of data due to a known communication failure,

the assumption is that safe operation continues using the remaining sensor.

Of course, loss of good data from the final sensor causes loss of the

aircraft.

64

The assumed operating rules for most of the mission-critical sensing

elements are slightly different. Vhen data are lost or unreliable, the

affected function can be terminated with no affect on aircraft safety.

Therefore, when there are only enough sensors to support detection, it is

assumed that the function is deactivated when the sensor fails. In the

same situation, if data from one sensor becomes unavailable due to a known

communication failure, function deactivation is also assumed. Full mission

capability is lost when deactivation occurs, but the policy prevents

hazardous operation resulting from mission-critical sensing failures.

One aspect of redundancy management operation considered deals with the

time required to identify a failed sensor and reconfigure the algorithm

accordingly. A possible hazard exists if, during a sensor failure recovery

period, another sensor from the redundant set fails. This situation will

be referred to as nearly coincident sensor failure. In the case of a

quadruple set of sensors, it means that two good sensor values will be

processed with two bad values. The resulting inability to "outvote" the

bad data is assumed to lead to the use of bad data by the system. For a

safety-critical function, this means loss of SFL capability. The results

in section 3.4.4 show that the likelihood of this situation is very small

and therefore significant only for the safety-critical sensors.

The results of the failure analysis by functional block are presented in

table 3.4.1-1 for the flight control group of elements.

Flight Control Sensing

The pilot command sensing functional block includes the pitch, roll, and

yaw command sensors as well as the flap lever and trim command switches.

0nly the flight path command sensors are safety critical, the rest are

mission critical. Nearly coincident like sensor failures are a hazard for

the flight path command sensors. The standard ground rules apply to the

elements in this block.

65

Table 3.4. 1- I. Function Failure Analysis - Flight Control

Function

Pilot command

Pitch, roll, yaw, sensing

Total loss
effect

Unsafe

Trim command sensing SFL

Flap lever SFL

Body motion sensing

Rate sensing Unsafe

Acceleration sensing Unsafe

Air flow sensing

Angle of a_ack Unsafe

Angle of sideslip Unsafe

Static pressure SFL

Total pressure SFL

Total temperature

Wing acceleration sensing SFL

Flight control computing Unsafe

Active failure mode considerations

Total loss of capability during critical phase of flight is

catastrophic

Loss of single surface - SFL (if all primary surfaces
operational)
Surface stuck/jammed - Unsafe

Canard control Unsafe

Loss of single surface or two sym metrical surfaces - SFL
Flaperon control Unsafe (if other primary surfaces operational)

Surfaced stuck/jammed - Unsafe

Rudder control Unsafe

TE flap control SFL

Nosewheel control SFL

LE flap control SFL

LOss of single surface- SFL (if all primary surfaces
operational)
Surface stuck/jamm ed - Unsafe

Loss of single surface - SFL

66

The body rate sensors and the body acceleration sensors are included in the

body motion sensing functional block. It is assumed that the redundancy

management can identify fallures perfectly as long as five or more sensors

are being used. Detection is possible only when four sensors are

operatlng_ however, operation can continue with three sensors if data is

lost due to a known communication failure. Because dual simultaneous

failures can theoretically be identified with seven or more sensors, nearly

coincident sensor failures are not a concern with the assumed complement of

eight instruments.

The airflow sensing functional block includes the angle of attack, angle of

sideslip, static, and total pressure sensors. The angle of attack and

angle of sideslip sensors are safety critical while the static and total

pressure sensors are mission critical. The safety-critlcal sensors are

vulnerable to nearly coincident sensor failure situations.

The wing acceleration sensing block includes the wing accelerometers at six

wing sites used by the flutter control major function. The fault reaction

for flutter control devices is sllghtly different from that assumed for

other mission-critical elements. Flutter control allows hlgh-speed, iow-

altitude ingress with external stores. The capability is needed for only

part of some mission scenarios. However, if the aircraft is operating in

the critical part of its flight envelope, total loss of this function will

cause loss of aircraft. Flutter control is different from the other

mission critical functions in that it cannot be immediately deactivated.

The aircraft must fly out of the critical region before the function can be

turned off.

A major analysis assumption is that the flutter control law design is

constrained to drastically lower the failure protection requirements for

sensing and actuation. The specific design objective is to provide a

minimum safe level of performance when sensing at a single site or

actuation of a single surface is lost. The resulting degraded performance

with a single passive surface or a loss of sensing at one location must be

adequate to allow safe flight out of the critical flutter envelope.

67

With this constraint, flutter sensing needs can be met with triple

redundant sensors at each site, providing fail-operatlonal/fail-off

capability. The operating assumption is that the aircraft will slow down

out of critical envelope before flutter control is deactivated. Full

operation continues after the first sensor failure, when only two good

sensors remain at a site. If one of the two remaining sensors fail, data

from that site is not used while the aircraft slows down. After slowdown,

the flutter control function is deactivated. Aircraft slowdown and function

deactivation is also assumed if sensor data becomes unavailable due to a

known communication failure. This fault reaction will prevent flutter

control operation with a single sensor, thus precluding exposure to a

subsequent fault with catastrophic effects.

The control law performance tradeoffs associated with this design

constraint were not evaluated because control law design and analysis is

not a part of this study. If it is impractical to design a control law to

this constraint, there will be an additional safety hazard with the

candidate architecture if flutter control operation is continued after

sensor failure (or surface actuator channel failure). This additional

hazard was not quantified during this study.

These assumptions on system behavior after sensor failures mean that except

for nearly coincident faults, three similar sensing failures must occur

before SFL capability is affected. Similarly, FMC capability is not lost

until two like failures have occurred.

Flight Control Computing

The major flight control functions all have computing subfunctlons

performed in the FTP. The flight control computing functional block

includes all of these subfunctions. Manual control, needed for SFL

capability, is the most critical flight control function dependent on the

FTP. Because FTP throughput performance is not dependent on channel

redundancy level, all functions will continue execution after channel

faults until safe operation is impossible. Therefore, the flight control

computing functional block remains fully operational after most FTP channel

68

b

failures. Exact agreement of channel outputs can only detect faults when

two FTP channels remain. Thus, the final FTP channel failure occurs,

causing all functions to fall when there are only two channels operating.

There were a couple of worst case FTF channel failure mode possibilities.

Worst case computation failure modes would result from events or faults

that could affect correct computation in more than one channel; however,

because avoidance of these situations is a key FTP design goal, they were

not considered further in this analysis. In another failure scenario, an

FTP channel could fail, generating valid but incorrect messages to the

actuator interfaces on one of the two networks. In this situation, an

actuator force fight will occur due to the disagreement between the good

commands on one network and the bad commands on the other. It was assumed

that the system could tolerate this situation for one or two application

cycles. Furthermore, it was assumed that all such failures would be

detected and full operation restored within this time period. Thus, no

active computation failure modes were modeled.

Flight Control Actuation

The common ground rules and assumptions used for flight control actuation

will be presented before the specifics of each functional block. The

flight control devices include the primary surfaces used in basic flight

path control, canards, flaperons, and rudders. Flight control secondary

devices include the nosewheel and the leading and trailing edge flaps. The

primary control surfaces are used by the safety critical manual control

function. A key failure analysis assumption is that continued safe flight

and landing is possible if a single primary surface fails passively. For

roll axis control, it is assumed that symmetrical pairs of flaperons can be

lost. In these situations, the performance reduction caused by the loss of

a single surface takes away FMC capability. Another key assumption is that

failures that leave any primary control surface stuck or hardover causes

loss of safety.

Most actuator control element failures are handled by the local redundancy

management processes. One assumption is that control valve and hydraulic

69

power failures are perfectly identified by the local process resulting in

an operational surface using the redundant devices. The remaining

actuation elements have uncovered failure modes that cause the central

actuator management process to command passive operation of the device. A

worse surface failure mode occurs when a failure leaves a device in a

Jammed or stuck position. One cause is a rare mechanical jam failure mode

of the hydraulic power ram. Other combinations of failures can also lead

to this situation. The failure effect on system capability of a jammed or

stuck actuator is device specific.

Generally, passive device operation eliminates FMC capability, but safe

flight and landing is still possible. For example, loss of high lift or

nosevheel steering may require diversion to an alternative base, but

landing is possible using emergency procedures. Similarly, a passive

flaperon will degrade the aircraft roll response below FMC standards, but

will allow a safe landing. A summary of these assumptions is that covered

actuation element failures will result in full operational capability,

while uncovered failures will lead to central safing action and a

corresponding loss of FMC capability.

The special fault reaction considerations for flutter control have been

previously described. For actuation, the assumption is that the control

law is designed with the capability to fly out of the critical flutter

envelope with a single passive flutter control surface. Fault reaction

will take place if a flaperon or trailing edge flap fails passive for any

reason during flutter operation. The flutter control function will be

deactivated after the aircraft slows down out of the critical flight

envelope.

The canard control, flaperon control, and rudder control functional blocks

include all eight primary control surfaces. The standard operating

assumptions apply to these surfaces. Passive operation of a single surface

results in loss of FMC capability. SFL capability is lost if any two

primary surfaces are passive (except for symmetrical flaperons). Jam of

any primary control surface is assumed to prevent safe flight and landing.

The flaperon control blocks are subject to the special fault reaction

considerations when flutter control is active.

70

The nosewheel control and leading edge flap functional blocks include a

dual-channel actuation device for each function. Passive operation of

either device results in a loss of FMC performance. The leading edge flaps

are assumed to remain in their last commanded position during passive

operation. It is assumed that a safe emergency landing can be accomplished

with a jam of the nosewheel.

The trailing edge flap functional blocks include the two trailing edge

surfaces and dual-channel actuator devices. A passive trailing edge flap

results in a loss of FMC capability. Additionally, if the failure occurs

during flutter control operation, the special flutter fault reaction

operation is required. Jam of either trailing edge flap results in a loss

of FMC capability.

3.4.2 Propulsion Group and Common Device Failure Analysis

Before discussing the propulsion control elements, the capabilities

provided by the propulsion system will be evaluated. The most critical

capability is control of thrust adequate to support safe flight and

landing. For the candidate twin-englne aircraft, a certain level of

single-engine performance is assumed to be necessary. The remaining

propulsion system capabilities primarily support the advanced fighter

missions; for example, the variable inlet is necessary for supersonic

missions, and the vectoring and reversing nozzles support short takeoff and

landing, enhanced supersonic maneuvering, and other mission capabilities.

t

The capability of each propulsion system after failures can be divided into

three major performance categories: full, normal, and low capability. Full

capability means that all functions are fully operational; this includes

full supersonic inlet control; full afterburner thrust control and full

thrust vector, and thrust reverse capability. The normal capability

category allows some degradation from the full performance level. As a

minimum requirement, the engine must be capable of providing the full

unaugmented thrust range. The nozzle and the inlet can be operating in a

fixed position mode. In the low capability category, the system cannot

71

meet the normal category minimum requirements. The engine has either

suffered a serious malfunction and cannot be operated, or it can only run

at a fixed thrust level.

The performance levels of both systems must be considered together in order

to determine vehicle capability. To fly all of the mission scenarios

envisioned for the advanced fighter, both engines must have full

performance capability. Full mission capability is lost when either system

suffers a failure reducing its capability below full. Based on the initial

discussion, safe flight and landing capability is provided if one of the

systems has at least normal capability. Safe flight and landing capability

is lost when a failure occurs that results in both systems having less than

normal performance capability. An argument could be made for requiring

afterburner capability for slngle-engine operation; however, this more

restrictive ground rule was not used in this analysis.

The propulsion control system moves several devices to provide its

capabilities. If sensing or actuation failures disable the control

function, some of these devices are assumed to have safe positions that

allow continued operation with degraded performance. These assumptions are

indicated in table 3.4.2-1 along with the consequences of this fixed

operation. These consequences are used in the detailed failure analysis.

Table 3.4.2-2 presents the results of the failure analysis of the

propulsion control elements for a single engine. The total loss effect is

expressed in terms of the single propulsion system capability. The next

column summarizes any special failure considerations for that functional

block. The rest of this section will discuss these results in more detail.

Propulsion Sensing

The inlet sensing functional block includes the three sensor types needed

to support variable inlet operation. The mission-critical inlet operation

occurs only during transonic and supersonic flight. The inlet sensor

redundancy management is based on the inlet flow model. The inlet model is

assumed to allow perfect identification of the first inlet pressure sensor

72

Table 3.4.2-1. Fixed Propulsion Device Operation

Device Fixed posit_on Consequences
i I i i i ii i

Upper ramp Subsonic Limited supersonic capability

Inner ramp Subsonic Limited supersonic capability

Bypass ring Subsonic Limited supersonic capability

Lrmited thrust
Fan guide vanes Run Range/reduced accel/decel

Limited thrust

[Compressor guide vanes Run Range/reduced accel/decel

Main fuel metering Off Engme shut down

•[' Afterburner fuel metering Off No afterburner capability

No afterburner capability/r Convergent nozzle Minimum area reduced accel/decel

Thrust vectoring nozzle Centerline thrust No vectored thrust capability

73

Table 3.4.2-2. Function Failure Analysis - Propulsion Control Loss Effect

Function

Inlet sensing

Duct static pressu re

Normal shock static pressure

Normal shock static pressure

Fan face sens,ng

Fan face pressure

Fan face temperature

Engine core sensing

Fan speed

Corn pressor speed

Propulsion
System

Normal

(Vehicle)

(SFL)

Normal (SFL)

Normal (SFL)

LOW (SFL)

Low (SFL)

Full (FMC)

Full (FMC)

Burner pressure Full (FMC)

Fan turbine inlet temperature Full (FMC)

Afterburner pressure Full (FMC)

Throttle command sensing

Propulsaon computing

Inlet control

Upper ramp

Inner ramp

Bypass rmg

Vane controJ

Low (SFL)

Low (SFL)

Normal (SFL)

Normal

Normal

(SFL)

(SFL)

Low (SFL)

Low (SFL)

Low (SFL)

LOW (SFL)

Fan guide vane

Compressor guide vane

Main fuel control

Metering valve

Flowmeter

Fuel shutoff

A/B fuel control

Zone metering valve

Zone fuel shutoff

L_ght off detector

Nozzle control

Lower flap

Upper flap

Convergentnozzle

Normal (SFL)

Normal (SFL)

Normal (SFL)

Normal (SFL)

Normal (SFL)

Normal (SFL)

Special considerations

Full operation w_th 4 of S sensor types Run/off if
only 3 sensor types available m engine core

Pilot shut down of engine if failure detection
process doesn't detect last sensor failure

Active failure mode may cause reduced thrust
operation at subsonic speed

Active failure mode may cause flameout or
corn pressor stall

Passive failure unsafe m conjunction wfth actwe
metering valve failure
Active failure mode may cause
overspeed/overtem p or flameout

Active fadure mode requires engine shutdown

Active fadure mode requ#res engine shutdown

Active fadure mode may cause overspeed or
compressor stall

74

failure and perfect detection of the second like sensor failure. This

allows the inlet to remain fully operational after the first failure.

Without the inlet flow model, failures cause fixed subsonic inlet operation

and a corresponding loss of FMC capability.

The fan face pressure and temperature sensors are covered by the fan face

sensing functional block. These sensors are used throughout the full

engine operating range. Detection and identification of failures is also

accomplished with the inlet model. The redundancy management is assumed to

operate perfectly while the inlet model is operational. When sensor data

is not available due to a dual like sensor failure or loss of inlet model

capability, the engine reverts to flxed-thrust level operation. This

reduces capability to the low performance level.

The engine core sensing includes the fan and compressor speed sensors, the

burner and afterburner pressure sensors, and the fan turbine inlet

temperature sensor. The engine core sensors are critical to normal

performance. Failures are detected and identified using analytic

redundancy techniques. The process handles certain sensor failure modes

very easily, while other failure modes present more difficulty. A fail-

operations/fail-off level of failure protection is assumed, which means

that the engine is fully operational with the loss of one sensor type.

When two sensor types are lost, the assumed fault reaction causes fixed-

thrust level operation, which is low performance capability.

The first throttle command sensor failure of a pair is assumed to be

perfectly identified with the redundancy management scheme. When the final

sensor of a pair fails, the engine reverts to low performance capability.

If the sensor failure is detected by the process, fixed-thrust operation

results. If the other throttle logic fails to detect the second failure,

the pilot can shut the engine down for not following commands. In either

case, the result is a loss of normal performance capability. With these

operating assumptions, it isn't necessary to distinguish between covered or

uncovered second failures in the reliability model.

75

Propulsion Computing

Propulsion computing operates like flight control computing in failure

situations. All computing functions are fully operational until the

failure of one of a remaining pair of FTP channels. The assumption is that

redundancy management automatically commands fixed-thrust operation when

computing is lost. There may also be a procedural requirement to shut the

engine down when conditions permit. In either case, performance is reduced

below the normal capability level.

Propulsion Actuation

Some standard assumptions and ground rules were used in the failure

analysis for the propulsion actuation functional blocks. A common

propulsion actuator was used for all devices. The key failure behavior

assumptions are as follows. All but a fraction of the propulsion actuation

element failures are detected by the self-test processes. These covered

failures result in the disengagement of one actuator channel, but the

device still has full operational capability through the remaining channel.

If the remaining channel then suffers a covered failure, disengagement

causes the device to move to the preferred fixed position.

Failures not detected by the self-test processes cause the central actuator

management process to command the propulsion device to the preferred fixed

position. These failures include undetected feedback position and actuator

drive failures, as well as a mechanically jammed control valve. These are

single failure situations resulting in fixed-device operation. Finally,

the consequences of the rare mechanical jam of the main actuator ram are

device specific, which will be described in each functional block

discussion.

The inlet control functional group moves three inlet devices. If any inlet

device fails to the preferred subsonic position, both engines are assumed

to operate with limited supersonic performance. Full mission capability is

lost because this eliminates the ability to perform some of the aircraft

76

missions. The jam failure mode could leave an inlet device in the

supersonic position. This is assumed to lead to reduced thrust capability

at slower speeds and therefore a loss of normal performance capability.

The vane control functional group includes both the fan guide vanes and the

compressor Ruide vanes. Loss of ability to move either set degrades the

engine performance while allowing continued operation. A conservative

assumption is that this degraded operation does not provide the normal

level of performance for the system. A jam failure of the device is

assumed to have the same result.

The main fuel metering valve, the fuel pumps and the fuel flow meters are

included in the main fuel control functional group. The fuel metering

valve moves to the shutoff position when continued control is impossible.

The resulting performance is below the normal level, resulting in at least

a loss of full mission capability. The main fuel flow model is assumed

perfect in detecting and identifying flowmeter and actuator position sensor

failures. Continued full operation is therefore possible after the first

failure of either sensor type. The model also is assumed to detect second

like failures. The maln fuel metering valve reverts to the fixed shutoff

position when both flowmeters or both position sensors are lost. Because

of the flow model, there are no uncovered metering valve position sensor

failures.

The unlikely jam failure of the main fuel metering valve causes a safety

hazard. In these situations, the central actuator management commands a

shutdown of the engine through the fuel cutoff valve. The fuel cutoff

valve is dual so that there are two ways to accomplish shutdown. A

significant active failure mode for this device would be uncommanded fuel

cutoff. This failure mode would of course also lead to loss of normal

performance for the system. The fuel pumps are sized to handle the

afterburner fuel flow. Full operation is therefore assumed possible if one

pump fails. Failure of both pumps leads to engine fuel shutdown and loss

of normal performance capability.

77

The afterburner fuel control functional group includes the A/B zone flow

metering valves, the zone flow fuel cutoff valves, the light off detectors,

and the ignitors. The afterburner is operated during limited periods of

the flight scenarios. The preferred fixed position for the metering valves

shuts off the fuel to that zone. Loss of metering capability for any zone

is assumed to disable all A/B capability. An assumption is that the

central actuator management process detects a jammed metering valve and

reacts by commanding disengagement of the zone flow cutoff valves. The

fault reaction also disables afterburner operation for the remainder of the

flight. The zone flow cutoff valves can be activated two ways to allow

zone flow. The active failure mode of concern would be uncommanded opening

of the valves. This failure is hazardous only in conjunction with a stuck-

open A/B fuel metering valve. Because this situation is a combination of

two rare failure modes, it was not included in the reliability models.

Perfect failure detection was assumed for the light off detectors. Full

operation is possible as long as one detector remains functional. If both

detectors fail, afterburner control sequencing is impossible, causing loss

of afterburner capability. Similarly, one ignitor will allow full

afterburner operation. If both fail, afterburner capability is lost. In

all situations involving loss of afterburner capability, the system

performance is reduced to the normal level.

The nozzle control functional block includes the thrust vectorlng/reversing

flaps and the convergent nozzle. Fixed operation for the convergent nozzle

is assumed to lead to normal capability for the system with no afterburner

thrust capability. The assumption for a jammed nozzle area device is loss

of normal performance capability.

Fixed operation for the vectoring/reversing flaps results in centerline

thrust capability only. This would reduce the engine capability to the

normal performance level. Because jammed vectoring/reversing flaps could

have a severe effect on attitude and speed control, the assumed fault

reaction is an engine shutdown with a loss of normal performance

capability.

78

Communication Devices

All of the major control functions in the three groups of the candidate

system depend on data transfer provided by network operation. Communication

device failures primarily affect sensing and actuation functional blocks.

That is, their primary function of sensing the environment or moving

actuators for the control function is interrupted by the communication

failures. The following subsection presents details on the consequences of

communication device failures.

Table 3.4.2-3 summarizes a high-level failure effect study for the elements

composing an I/O network. Two generic failure modes are considered, the

active mode generally having a more serious affect on network operation.

Communications device failures can affect sensors and actuators on one DIU,

a subset of the DIUs, or all of the DIUs on a network. The effect depends

on the device failure mode and the location of the failure in the active

network. All sensors and actuators affected by the failure are unusable

until network repair action restores communication. Communication failures

can have permanent as well as temporary effects on system operation. When

elements llke nodes or DIU links fail, it causes a permanent loss of the

sensors and actuators dependent on them for connection to the system.

Network redundancy management is challenging because it is difficult to

identify specific failures with the information available after an

unsuccessful chain of transactions. Many of the failures have similar

effects when observed from the FTP. Repair attempts based on the most

likely failure or the most easily repaired failure are made to localize the

problem. Failure modes not included in the table exist that present

especially difficult problems to the network redundancy management.

Particularly bad are those that look like other failures and cause the

resulting repair action to come to a halt at an inopportune time during the

repair sequence. Current techniques to handle such failure modes employ

special time-consuming tests at each step in the repair to ensure success.

These tests drastically increase the repair time and must be custom

designed to catch each and every unique failure mode.

79

Table 3.4.2-3. Communication Device Failure Summary

Dewce type

Network node

Network link

Fault type

Passive

Fault effect

Loss of comm to all downstream
devMces

Nw unusable

Actwe Node does not obey
reconfiguration command

Loss of comm to/from all
Passive downstream devices

Active

Root link Pass#ve

Active

Network interface Passive

Active

DtU LI n k Passive

Active

DIU Passive

Active

NW unusable or loss of comm to
all downstream devices

Repair act=on

Rebudd network around failed
node

Rebuild network around failed
node

Rebuild path around failed link

Rebudd path around faded link

NW unusable Switch to alternate root hnk

Switch to alternate root

NW unusable link/reconfigure old root node
to disable old root link

NW unusable Switch to alternate root link

NW unusable

Loss of comm to DIU and all
serviced devices

NW unusable

Loss of comm to OIU and all
serviced devices

NW unusable
Actuator

Command values corrupted
Sensor values corrupted

Switch to alternate root

link/disable old root link at old
root node

Disable OlUlinkatservlcmg
node

Disable DIUlinkatservicing
node

8O

While the network is being repaired, system operation must continue using

the remaining accessible sensors and actuators. This includes those

devices on the remaining good network and any devices that can still be

reached on the network with a failure.

There are several ways network operation during network failure recovery

can cause system failure. The three most significant have been termed (i)

temporary exhaustion, (2) nearly coincident network-sensor/actuator

recovery, and (3) nearly coincident dual network recovery. Temporary

exhaustion failures occur when previous device failures leave the system

without enough devices to safely fly during a subsequent network repair

period. This is shown in figure 3.4.2-1 for the candidate architecture

situation with quadruple sensors. In the scenario presented by the figure,

both sensors on one network have previously failed to make the system

vulnerable. A subsequent failure on the other network will disrupt

communications with the remalning devices, putting the system out of

control until the repair is completed. Normal operation is possible after

communications are restored, but if the repair period is too long, it will

be too late to save the system. Hence, the name temporary exhaustion.

A nearly coincident network-sensor recovery situation is shown in

figure 3.4.2-2. Normally, the bad data from a faulty sensor is prevented

from disturbing the system by the voting redundancy management process.

Because of normal sensor mismatches, the process needs time to reliably

exclude the faulty sensor data from further consideration. In this

coincident network recovery situation, the voting process is temporarily

without enough good sensors to outvote the faulty sensor. Bad data is

assumed to propagate to the control function, causing loss of safety.

Surface actuation for the primary control surfaces is also vulnerable to

nearly coincident network recovery. As a consequence of the dual network

configuration, an actuation channel will disengage the actuator a few

cycles after losing command updates. Disengagement is necessary to allow

the channels on the other network to provide control during network outages

or communication device failures. The nearly coincident situation occurs

when an actuator channel has an undetected failure that is causing a force

81

Previous
failures

•"--'-'-_To FTP

Network

X recovery

Legend:

_Sensor

Q Node

Figure 3.4.2-1. Temporary Exhaustion

82

FTP

legend:

A Sensor

O Node

A (

A (
recovery

×

Figure 3.4.2-2. Nearly Coincident Network---Sensor Recovery

4

83

fight vlth the good channel at the same time a network fault occurs. In

this situation, the central actuator management fault reaction commands the

surface to passive operation. If a network fault interrupts

communications, the safe command cannot reach the good actuator channel.

The channel with an undetected failure may therefore drive the surface

hardover when the good channel disengages due to lost communications.

The final situation is nearly coincident dual network recovery. This is a

straightforward case in which both networks undergo repair at the same

time. Because there are only two networks, all affected redundant sensing

and actuation is lost during the mutual repair period. All three of these

network operation situations are assumed to lead to loss of safety because

of the effect on safety-crltlcal sensing and actuation.

Some of the communication elements have active failure modes that directly

affect sensing and actuation performance. One example from the table is a

postulated active DIU failure mode that corrupts the actuator command while

satisfying the DIU-actuator protocol. The problem will be detected by the

central actuator management process and will result in central safing

action. This significant active failure mode was included in the

reliability models to assess the possible hazard.

Another significant communication failure mode would be a bad NI that

continues to send valid messages containing outdated actuator commands.

This would cause channels on the bad network to oppose channels on the good

network thereby freezing the surfaces. However, it was assumed that this

situation would be detected and terminated within a few application

execution cycles, and so it is not included in the reliability models.

Central Pover Distribution

Two central systems are used extensively by elements of the candidate

architecture: the hydraulic power distribution and the electric power

distribution systems. In this study, the details of the secondary power

configuration, which includes the engine, accessory drive, and emergency

84

power unlt_ were considered part of basic airframe system. Only the

distribution elements were considered part of the IAPSA II system to be

analyzed.

Hydraulic power is supplied to the actuators of both the flight control

group and the propulsion control group by two independent aircraft

hydraulic systems. All system actuators have two control valves operating a

dual tandem power ram. Loss of one hydraulic system is assumed to result in

a passive loss of one of the two hydraulic channels. All actuators can

continue full operation with the remaining channel. If both hydraulic

channels fail, all control devices fail passive, resulting in loss of the

aircraft.

There are many two-failure situations leading to a passive loss of an

actuation device. The loss of a hydraulic system makes all devices

vulnerable to a failure in the other actuator channel. The actuator

redundancy management processes must operate correctly during hydraulic

system failures or anomalous performance situations that might occur during

peak demand periods or operation after loss of one system. For this

evaluation, it was assumed that actuator redundancy management performs

perfectly and that hydraullc failures lead to passive channel failures.

The electrical power distribution for the architecture was based on an

approach for fault-tolerant electric power presented in reference C.

Critical power is provided to the IAPSA elements through four electrical

load management centers. The candidate architecture assumption is that each

system element is connected to a single power source. It was assumed that

the connection was organized so that loss of a single power source could

not reduce the redundancy of any sensing, computing, or actuation device by

more than one level. With this assumption, safety is not affected by a

sequence of electrical source failures until the loss of three eliminates

the computing function and body motion sensing.

There are many three-failure loss of safety situations and two-failure loss

of mission situations involving electric power sources. Because the

communication devices and the dependent devices use the same power source

85

in a single connection system, redundancy management in the FTP sees the

effect of a power loss as a known loss of communications with one-fourth of

the system devices. A detailed electrical connection plan was not developed

for the candidate architecture analysis. More detailed modeling of the

electric power distribution was performed for the refined architecture

described in section 5.

3.4.3 Reliability Modeling

The functional block organization of the system elements used for failure

analysis was also used for reliability modeling. Each of the reliability

models covers a section of the system containing key sensing or actuating

or computing elements. Data transfer elements are included in the section

models where their failure has a permanent effect. Table 3.4.3-1 shows the

elements included in each of the flight control section models. The same

information for the propulsion control elements on a single propulsion

system is presented in table 3.4.3-2.

The reliability models are used to estimate the likelihood of the failure

situations identified during the failure analysis. Each section model

includes the local effect of hydraulic system, electrical power system, and

network failures. The element failure rates and other related information

used in the evaluation are shown in tables 3.4.3-1 and -2.

These tables also show the failure rates assumed for the system components.

Other parameters assumed for the reliability models are also shown in the

tables. Included are the coverage values used for the critical self-test

processes described in section 3.4.2. For example, the self-test hardware

is assumed to detect 99 percent of the surface actuator position feedback

sensor failures as a baseline. Therefore 1 percent of the failures lead to

undetected failures and a resulting surface shutdown. There are also

entries for components with significant active failure modes. In these

cases, the table shows the fraction of total device failures assumed to be

"active" failures.

To simplify the reliability evaluation, some conservative assumptions were

made about the temporary effects of network element failures. The goal was

86

Table 3.4.3-1.

Cock pit

Sensors

Air

Fcom

Name

Pit (2 surfaces)

Devices

Pttchstick sensors

Rollstick sensors

Rudder pedal sensors

Cockpit nodes

Cock pit PlUs

Body rate gyros

Body accelerometers

Sensor nodes

Sensor DIUs

Total pressure sensors

Static pressure sensors

Angle of attack sensors

Angle of sideslip sensors

Sensor nodes

Sensor DIUs

FTP channels

Root link/root node

NW interface

Actuator processor

Actuator position sensor

Valve drive group

Control valve

Canard PlUs

Canard nodes

Electrical load

Management center

Hydraulic power supply

Notes:
AFF - active failure fraction

COV - coverage fraction

Section Models - Flight Control

Failure rate
Number (X10.6/hr)

4 10

4 10

4 10

4 15

4 15

8 50

8 30

4 15

4 15

4 20

4 20

4 33

4 33

4 15

4 15

4 200

6 20

6 20

4 50

4 10

8

4 15

4 37.5

4 37.5

Comments

COY = 95

COV = .99

AFF == 333xI0 -_

4 2O

2 20

C-2-

87

Table 3.4.3-2. Section Models- Propulsion

tntet

Face

Engine

Fuel

Ecom

After

Nozzle

Prop

Name Devices

PSo sensor

PTNs sensor

PSNs sensor

Inlet nodes

Inlet DIUs

Upper ramp actuator

Inner ramp actuator

Bypass ring actuator

PT2 sensor

TT2 sensor

Fan guide vane actuator

Compressor guide vane actuator

Engine nodes

Engine DIUs

N1 sensors

N2 sensor

PT4 sensor

FTIT sensors

PT6 sensors

Engine nodes

Engine DIUs

Main fuel metering actuator

Fuel flow sensor

Main fuel shutoff

Main fuel pump

Engine nodes

Engine DIUs

FTP channels

Root link/root node

NW interface

Zone fuel metering actuator

Zone fuel shutoff solenoid

A/B lightoff detector

Engine nodes

Engine DIUs

A/B Dgmtors

Upper flap actuator

Lower flap actuator

Convergent actuator

Nozzle nodes

Nozzle OIUs

Fail passive electronics

Actuator position sensor

Control valve

Engage solenoid

Notes:

Control valve jam

2 Power ram jam

AFF - active fadure fraction

COV - coverage fraction

Number

2

2

2

2

2

1

I

1

2

2

1

1

2

2

2

1

1

2

2

2

2

1

2

2

2

2

2

3

4

4

5

10

2

2

2

2

I

1

1

2

2

2

2

2

Failure rate
(X 10-61h r)

15

15

15

37.5

37.5 AFF = .05

Comments

15

85

37.5

37.5 AFF = .05

50

50

4O

100

4O

37.5

37.5 AFF = .05

40

11 AFF = .01

100

37.5

37.5 AFF = 05

200

2O

20

11 AFF = .01

5

37.5

37,5 AFF = 05

80

375

37 5 AFF = 05

15 COY = gg

I0 COY = gg

15 AFF 1 = 0333

AFF2 = 333 x 10 `4

11 AFF = .01

88

to use the evaluation results to indicate potential problems with the

network operation. All network element failures, regardless of failure

mode, were assumed to cause loss of all devices on the entire network

during the repair period. To scope the hazard, it was assumed that all

repair periods are 1 second long.

A special failure analysis concern was the hazard associated with active

DIU failure modes. To assess the potential problem, a fixed fraction of

all DIU faults were assumed to be active failures.

Two models were created for some of the sections, one version to predict

the probability of loss of flight safety and one to predict the probability

of loss of full mission capability. There were two reasons for this.

First, the evaluation tool only provides the probability of reaching the

model absorbing states that correspond to either a loss of safety or a loss

of mission capability. Second, it turned out to be more convenient

(especially during the refined configuration evaluation effort) to build

separate models so that failure condltlon-peculiar model reduction

techniques could be used.

The overall probability of system failure was estimated by combining the

results from the individually solved section models. If the sections are

completely independent, the system failure results from each section are

added together to provide a good first order estimate for total

unreliability. Higher order correction terms are missing, but the answer is

adequate for highly reliable systems. On the other hand, combining section

results must be done very carefully for the candidate system because the

sections are not totally independent. Some of the common elements affect

the state of more than one section. Therefore, certain failure sequences

appear in more than one section model. Also, some section failure states

need to be considered together to determine system success or failure. For

example, two sections may have failure conditions with a level of

performance that is not safety critical when considered one at a time.

However, the coexistence of the degraded states in both sections may result

in system failure. It should be noted that these kinds of problems can be

minimized by careful grouping of the elements into sections.

89

The section models were developed in an Iterative manner in the candidate

evaluation effort. Usually, the first version of the section model covered

Just a few of the failures and failure modes. A relatively complete

section model was built containing all possible failure states, regardless

of likelihood. The model was then evaluated and simplified to eliminate

unimportant characteristics. Next, a more detailed version was created by

adding more failure situations to the model and repeating the evaluation

and simplification cycle. Early in the evaluation, certain failure

sequences were seen to dominate the unreliability of the candidate

configuration. Because configuration changes were necessary, the analysis

was not carried to completion. Once it was clear that the dominant failure

sequences had been determined, the modeling effort was terminated. Some

specific points about the resulting section models are discussed in the

remainder of this section.

Flight Control Models

The flight control section models are shown in table 3.4.3-1. These models

were built to evaluate the loss of safety failure conditions, vlth the

exception of the PIT model. During model development and evaluation, it

became clear that the mission failure likelihood would be dominated by

single-failure situations. Because none of these were identified in the

failure analysis for most of the flight control functional blocks, a

mission failure version of the model was not built.

The COCKPIT model was based on the safety-critlcal components, nodes, and

associated DIUs of the pilot command sensing functional block. The model

captures sensor exhaustion failures, dependency on communication elements,

and nearly coincident sensor failures. Also included were the temporary

exhaustion and nearly coincident network recovery failure situations.

The body motion sensing functional block was evaluated with the SENSOR

model. All of the failure situations covered in COCKPIT are included,

except for nearly coincident like sensor failures. As described

previously, nearly coincident sensor failures are not a threat with eight

90

devices until two sensors have failed. However, the model includes the

nearly coincident network-sensor failure situation because it is still a

problem.

The AIR model was based on the airflow sensing functional block. This

model treated the quadruple-redundant static and total pressure sensors as

though they were safety critical. This was a conservative approach because

the defined manual control function does not require them. This inclusion

had no significant effect on the model results. The model includes all of

the failure situations covered in the COCKPIT model.

Two FCOM models were built based on the flight control computing functional

block. One of the models evaluates the loss of safety failure condition.

Another model was defined to evaluate the likelihood of permanent loss of

either network. In such a situation, the subsequent failure of any safety-

critical sensor is catastrophic. The evaluation confirmed the assumption

that the permanent failure of a single network in the candidate system was

not a part of any of the significant system failure sequences.

The PIT model treated the failure behavior of a pair of control surfaces

based on the canard control functional block. As mentioned previously, two

versions of PIT were built, one to the safety criteria and one to the

mission criteria. The safety model included the following failure

situations: (I) a single surface jammed or hardover, (2) a pair of passive

critical surfaces, and (3) a dual hydraulic failure. Additionally, the

temporary exhaustion and nearly coincident actuator-network recovery

failure situations were covered. The mission model only included the

dominant failure sequences, all of which cause a single passive surface.

The results of these two PIT models were extended to estimate failure

contributions due to the four primary surface pairs. A weakness of the

candidate architecture results is that the dual passive surface failure

situations did not account for passive surface combinations on different

axes. For example, the likelihood of system failure due to a passive canard

and passive flaperon was not calculated. It should also be noted that the

contribution to mission failure from the secondary flight control devices

was not evaluated.

91

Propulsion Control Models

The section models for the propulsion system are shown in table 3.4.3-2.

These models were built to evaluate the likelihood of a single system

losing either full or normal performance capability. In accordance with

the general failure analysis ground rules presented earlier, loss of full

performance on either engine causes loss of mission. Loss of vehicle

safety occurs when both engines have less than normal performance.

Temporary exhaustion situations are included in many of the propulsion

control models to quantify their likelihood. It was not clear whether

propulsion control functions could be designed to tolerate temporary

exhaustion situations. In any case, the numerical results showed that such

failures were not slgnlflcant. The following discussion provides

additional information about the specific models.

The INLET model includes elements from both the inlet sensing and inlet

control functional blocks. Loss of full performance capability is the

model failure condition because that is the result of most inlet element

failures. The model includes sensor and actuator channel exhaustion

failures and dependency on comuunication elements. Inlet device control

valve jams are incorporated as a significant active failure mode. Inlet

device jams, leading to a loss of normal capability, are modeled and

visible in the section results.

The inlet flow model was assumed to be fully operational for redundancy

management. Total loss of one of the necessary sensors results in either

loss of normal performance capability or flxed-inlet operation. In either

case this means that the flow model is available when needed. The only

situation that might violate the assumption is the nearly coincident

failure of two sensors covered by the inlet flow model. Because this

unlikely situation cannot contribute significantly to system failure, it

was not treated in the model.

The fan face pressure and temperature sensors from the fan face sensing

block and the fan and compressor guide vanes from the vane control

functional block are included in the FACE model. This model was built to

92

evaluate the likelihood of element failures causing loss of normal

performance capability. The same failure situations included in INLET are

covered in FACE.

The ENGINE model includes just the engine sensors from the engine core

sensing functional block. The model failure condition was loss of data

from two or more types of core sensors. This is a loss of normal

performance failure condition. ENGINE also included the nearly coincident

sensor-network recovery situation and temporary exhaustion failure

situation. In addition, ENGINE modeled the likelihood of nearly coincident

failures among the five sensor types.

Most of the elements in the main fuel control functional block are

contained in the FUEL model. The exception is the dual fuel pump that was

modeled separately. The model failure condition was loss of normal

performance capability. One special situation for this model is that there

are no undetected position sensor failures in the main fuel metering

actuator. Also, active fuel shutoff valve failures that cause uncommanded

engine shutdown are modeled.

FCOM models the behavior of a triplex FTP that performs the propulsion

system computing for a single system. Two versions of FCOM were built.

The failure condition for one version was loss of normal performance

capability. The second version included loss of a single network as a

special failure condition. This version verified that failures associated

with single network operation are not significant contributors to system

failure.

Most of the elements from the afterburner fuel control functional block are

handled in the AFTER model. The exceptions are the ignitors and light off

detectors, which are modeled separately. AFTER models device failures that

cause the system to lose full performance capability. This model includes

exhaustion failures, dependency on communication elements, device jam,

control valve jam, and temporary exhaustion.

93

NOZZLE includes the devices from the nozzle control functional block. Most

nozzle element failures reduce system performance to the normal level. The

model includes nozzle device jam failures that lead to a worse condition,

loss of normal performance. NOZZLE contains all the failure" situations

included in the AFTER model.

3.4.4 Reliability Results

The most important benefit of early system evaluation is that it provides

indications of the system's strengths and weaknesses. The reliability

results available to the system design team must be detailed enough to be

used for making improvements. The system failure probabilities should be

categorized by specific failure situation to assist the reliability

evaluation. This information should provide insight into the operation of

the fault-tolerant system, which can then be used to guide necessary system

design changes.

A fault-tolerant system can fail in several ways. Redundancy exhaustion is

the most obvious failure mechanism. When enough of the redundant devices

fail, the function can no longer operate. For highly reliable systems,

imperfect performance of the redundancy management processes becomes

important. In this study, nearly coincident like sensor failures were

identified as a cause of early system failures. Because this failure

mechanism is related to the duration of the failure recovery process,

reliability modeling is necessary to specify a requirement for the system.

This study also defined several failure mechanisms involving operation of

the I/O network. The detailed results show whether or not the specific

building block configuration is satisfactory for the IAPSA II system.

The design also incorporated elements that were subject to postulated rare

active failure modes or failure modes that could not be detected by simple

redundancy management processes. One evaluation question is whether the

simpler, lower performance processes can support the system requirements.

If not, more complicated hardware and software is needed. Therefore, the

detailed results must quantify the contribution of these special failures

94

to system unreliability. A complication is that the input failure mode

data is generally not available for devices early in the design process.

Good quality data of this kind is usually the result of detailed failure

analysis of inservlce equipment failures.

Likewise, failure data to support the evaluation of the undetected failure

mechanism is difficult to obtain. To determine good coverage values for

the processes used in the candidate system definition, a full redundancy

management performance analysis must be performed using device failure

characteristic data. Again, information at this level of detail is usually

not available for early concept development work. The approach taken for

this study is to use assumed values to indicate the magnitude of the threat

associated with the respective failure mechanism. These results must then

be treated as having a much higher than normal level of uncertainty.

Design concept results containing sequences with a lot of uncertainty must

be evaluated carefully. Different designers will interpret the same

results very differently. There are several options available for design

concepts whose reliability is dominated by failure sequences with a high

degree of uncertainty. One option is early prototype development of the

devices and redundancy management processes in question. Evaluation of the

prototypes would provide accurate data for assessment and improvement of

their design and performance. Alternatively, compatible design concepts

could be developed in parallel to be available as a backup if the original

concept turns out unsatisfactory after undergoing detailed development.

The program benefit of the rough evaluation of these more complicated

failure mechanisms is the early warning provided for specific areas of

possible development risk.

The model results for the loss of safe flight and landing capability are

shown in table 3.4.4-I. The safety data are based on mission time of 3

hours. The results are divided into functional blocks, which show how the

loss of specific functions contribute to the loss of safety. These results

come from the flight control models for COCKPIT, SENSOR, AIR, FCOM, and PIT

(safety condition).

95

Table 3.4.4- I. Safety Reliability

Funct#onal block

FC sensing

Probability x 10 .7

Pilot .0023

Body motion 5.08

Airflow .0078

FC computing .012

FC surface control

Pttch .19

Roll 38

Yaw .19

Hydraulic power .036

Dual propulsion control .0076

Total 5.g

96

The contribution to loss of safety from the propulsion system was based on

situations where failures cause one system to have less than normal

performance capability. The FACE, ENGINE, and FUEL models were evaluated

for a 3 hour period to establish this probability. Additionally, the small

contribution due to jam failures in the INLET and NOZZLE models was

included in the single system value. This value was then used to estimate

the likelihood of the unsafe situation where both systems have less than

normal performance.

Before combining the results from the separate models, it was necessary to

eliminate the double counting of communication element failure sequences.

For example, the ENGINE and FUEL models both contaian the engine

nodes/DIUs. Identical dual failure sequences are contained in both models.

The probability sums were adjusted where necessary so that common sequences

were only counted once.

A few failure sequences dominated the safety reliability for the candidate

architecture, preventing it from meeting the system requirement. The

predominant sequence was loss of body motion sensing in a temporary

exhaustion failure situation. This two-failure sequence occurs when a node

or DIU fails, leaving the system vulnerable to subsequent repair on another

network. When the subsequent network element failure causes the other

network to shutdown for repair, only two good sensors are accessible

instead of the three needed to estimate the three axis states. A key

assumption in temporary exhaustion failure modes is that the network repair

exceeds the time the system can tolerate loss of control. Another

assumption affecting the likelihood of this failure sequence is that all

network element failures lead to a long repair period.

The other dominant loss of safety sequences are associated with surface

control. The first situation is a jammed or stuck single surface. The two

most common failure sequences are (1) a mechanical jam of the power ram and

(2) a detected failure-undetected failure sequence in the two actuator

channels for one surface. The second dominant surface control situation is

a pair of critical surfaces failing passive. The most common cause of this

situation is an undetected actuator channel failure on one surface leading

97

to central safe action, followed by an undetected failure on a channel of

the second surface. It should be noted that the contribution to loss of

safety from passive pairs is understated in table 3.4.4-1 because the

probability was calculated for pairs on the same control axis. Passive

surface pairs on different axes were not included.

The element failure modes that take part most often in surface control

failure sequences are undetected actuator channel failures and mechanical

jam failures. Undetected failures include actuator processor or position

sensor faults not covered by the local redundancy management as well as

active DIU faults. There is a large uncertainty associated with the

probability of these failures. Mechanical jam of the power ram, for

example, is usually considered to fall in the extremely improbable

category. The other channel failures were characterized by a coverage and

active failure fraction in the reliability model. As mentioned earlier,

these values are not well known early in the system life cycle; however,

for the nominal values used in this analysis, the surface control failure

sequences were significant to aircraft safety.

The full mission capability reliability for the system is shown in

table 3.4.4-2. All of the propulsion control models were used in the

mission evaluation. The models were evaluated using a mission time of

1 hour. Any failure reducing a single propulsion system below full

performance capability causes a loss of full mission capability. Active

DIU failures were not incorporated directly in the propulsion control

models. The effect was calculated separately assuming that inlet and

nozzle active DIU failures caused loss of FMC capability due to fixed

operation, while active engine DIU failures cause loss of normal

performance capability for the engine.

With the exception of the surface control devices, elements from the flight

control group were not included in the mission capability evaluation. The

flight control models described earlier covered safety critical elements

that lose mission capability at the same time they lose safety. These

elements therefore don't affect mission reliability until the third

failure. Early evaluation results showed that only one and two failure

98

Table 3.4.4-2. Mission Capability Reliability

Functional block
ii i

FC surface control

Pitch

Roll

Probability x 10 -4
i

.t8

36

.18Yaw

Propulsion system (per engine)

Fixed inlet 046

Fixed guide vanes 031

Engme core sensing 00066

Core fuel metering .016

Afterburner metering .076

Fixed nozzle 045

Engine corn putation 0015

Propulsion DlU active fault* .11

Aircraft total 1,4

"Not in models

99

sequences contributed significantly to loss of mission capability for the

candidate architecture. Of all of the flight control models described

earlier, only PIT had a loss of mission capability at the one-failure

level. Therefore only the mission capability version of the PIT model,

which evaluates the likelihood of a single passive surface, was used for

the loss of mission capability evaluation.

The mission success likelihood was unsatisfactory based largely on failures

requiring central actuator management action to safe actuation devices.

These are all cases in which full mission capability is lost at first

failure. The specific failures consisted of active DIU failures,

undetected actuator controller faults, and propulsion actuator control

valve Jams. Like the flight control actuation safety situation, all of

these failures are modeled vlth parameter values that have a large range of

uncertainty.

Several aspects of the candidate architecture were not completely modeled;

however, the results were carried far enough to show the need to change the

design concept to better meet the reliability requirements. The key safety

concern is that certain two-failure sequences cause loss of capability.

Similarly, certain single failures can cause loss of mission capability.

The specific situations and the resulting design refinements are discussed

in section 5.

100

4.0 CANDIDATE PERFORMANCE EVALUATION

Thls section details the performance analysis of the IAPSA II candidate

system architecture. The performance evaluation steps shown in figure 4.0-

1, are described in reference 5. An overview of the key methodology steps

is presented in the following paragraphs.

Application Performance Requirements

Performance requirements deal with allowable update rates and time

parameters associated with the defined control functions. These

requirements were defined in section 3. After the control functions have

been mapped onto an architecture configuration, the configuration must be

evaluated to guarantee that the control function performance requirements

are met.

This effort defines the digital implementation timing characteristics

needed to satisfy the mission and safety requirements. These timing

requirements include control law update rates; allowable end-to-end time

delay between sensor reads and resulting actuator commands; and limits on

the frame-to-frame variability of control cycle actions (jitter).

Architecture Description

The performance analysis is based on an architecture description that

defines how the timing of the key application functions is to be

controlled. These key sequencing and control details must be defined

whether the architecture is based on a custom design or on a building-block

approach, such as that used for IAPSA II.

Synthesize Candidate Architecture

This step maps the control functions onto the candidate configuration and

details the operation of the sequencing and control functions. Simple

101

L
Syn_e4ize
carN:lidato
mrchi-

tecture

Candidateaccepted

for

rejection

Specie/
syst_
architec-
lure

Figure 4.0-1. Performance Evaluation Methodology

102

timing charts are used to organize the application computing, application

I/O, and system processes. This step may eliminate many configurations

using these simple timing charts. During this step the underlying system

or executive functions may need definition (specification).

Identify Critical Validation Issues

In addition to the normal performance requirements, the performance model

should be able to be used for early evaluation of any critical validation

issues related to timing. In general, these include situations in which

stringent timing needs must be met for safe operation of the system.

Identification and evaluation of these issues early in the system design

phase will greatly enhance the development and validation effort.

Define Experiments

Experiments are defined for evaluation of the candidate under normal

performance and failed conditions. In addition, the critical validation

issues are investigated. The experiment definition includes the key input

and output variables, the technique to control the experiments, and also

the number of runs needed to assess the statistical variations in the data.

Build Model

A simulation model is developed to investigate the critical system

behavior. The simulation is normally composed of high-level, low-fldelity

functional models of the key application processes, together with models of

the associated sequencing and control functions. The decision about what

functional behavior should be included or how much detail needs to be

modeled is based on the data needed to support the defined experiments.

The simulation can be updated as the detailed design is developed. This

expanded simulation model can then be used in future development phases to

verify the correct implementation of the hardware and software. Finally,

the detailed simulation model can be used as part of the supporting

deliverable data for validation.

I03

Collect Data and Rvaluate

The simulation model is used to perform the experiments defined to study

normal performance and the critical validation issues. The data results

are evaluated in terms of the application performance requirements. Based

on the data evaluation, four possible decisions can be made, as shown in

figure 4.0-1: (1) reject the candidate architecture, (2) accept the

candidate architecture, (3) refine the architecture, and (4) identify new

critical issues.

The candidate architecture is acceptable when all application performance

requirements are satisfied. Refinement actions modify the implementation

concept, vhlch will require changes in the simulation model. As a result

of the insight gained during the evaluation, new critical issues may become

apparent. This wlll require changes in the set of evaluation experiments.

Furthermore, as more detail of the configuration is added, additional

requirements will be generated.

The following sections describe in detail how the performance evaluation

process was applied in the IAPSA II work.

4.1 Synthesize Candidate

4.1.1 Application Performance Requirements

The purpose of the IAPSA II study is the design and validation of a control

system architecture for a twln-engine fighter with significant coupling

between the airframe and engines. Thls section describes the application

performance requirements adopted for the IAPSA II reference configuration.

The control law design effort defines the necessary timing requirements for

each function. The control function is implemented with a repetitive

timing cycle that reads the sensors, updates the control law variables, and

commands the actuators. The design effort defines the necessary update

rate needed for satisfactory performance of the control function. The

104

fundamental performance requirement is then to perform all the computing

and I/O activity defined by the design effort in the available update

period.

The system specification also requires that the application activity have

100 percent growth capability. In general, growth capability is difficult

to measure because of the system complexity. In this study, a simple

measure of growth capability was used indicating how much the application

activity can increase before reaching system throughput limits.

Control law performance is affected by the end-to-end time delay between

the reading of a sensor and the start of the resulting actuator movement.

This time delay interval is illustrated in figure 4.1.1-1 for a specific

sensor-actuator pair. The effect of time delay on control law performance

ranges from imperceptible to rough handling characteristics to loss of

control in extreme cases. Specific performance-related time delay limits

were not available for the IAPSA II control functions; a time delay value

of one control cycle period or frame was assumed to be the criterion for

satisfactory performance.

The control law design is usually based on a sampled data approach that

implicitly assumes uniform sampling periods (regularity in the control

cycle repetition rate). The important control cycle actions with respect

to lack of regularity or jitter, are the reading of sensors and commanding

of actuators (fig. 4.1.1-1). As with time delay, specific performance

requirements were not available for control cycle jitter. Small variations

with respect to the update period are acceptable, while large variations

are unsatisfactory.

4.1.2 Reference Configuration Analysis

This analysis develops the high-level system performance data that will be

used to evaluate the candidate architecture. The focus is on how hardware

and software elements of the candidate architecture perform the application

functions. In this analysis, the performance of each major group (flight

control and engine control) is treated separately. Ultimately a separate

simulation model is created for each group.

105

AppIi-o=,o°I _ I

system
0 ms

Legend:

Input

Output

H H

10 ms 20 m=

Figure 4.1.1.1. Example Application - Update Rate 100 Hz

30 ms

106

The performance model was developed in three distinct, sequential phases.

The three phases were (I) the initial timing, (2) initial AIPS timing, and

(3) revised AIPS timing. In these phases the application timing data are

built up and organized manually using simple timing charts. Situations

involving variable timing needs or contention for shared resources are

deferred to the simulation model development for promising configurations.

4.1.3 Initial Timing

The organization of the application activity follows the computing

subfunctlon allocation defined in section 3. All functions within the same

update rate are lumped into a single rate group. The computing and IlO

activities for all the functions in the same rate group are combined.

Therefore, if more than one function needs to communicate with the same

DIU, the DIU is accessed only once, obtaining all data needed by the

functions in that rate group. This consolidation of message traffic

reduces the I/O demands of the application.

The initial timing assumes that the control cycle for each application rate

group starts with the input IlO activity needed by the rate group, followed

by the compute activity, and finally by all output I/O activity. This

particular organization of the I/O activity is referred to as separated

IlO. The input I/O activity for each application rate group supplies all

data from the sensors, actuator positions, etc., requested by all functions

during the current control cycle update. The compute activity performs any

sensor and actuator redundancy management and updates the control law

variables. The output activity consist of sending position and redundancy

management commands to all the necessary actuators via the DIUs. This

organization of I/O activity and computing activity is shown in figure

4.1.1-i for a single application rate group.

The initial timing development phase considers a single I/O network that

must be shared by all rate groups. The input I/O activity starts each

control cycle. I/O activity is nonpreemptable; once started it runs to

completion. A sequencing and control function is assumed that operates

each rate group in order of priority, with the fastest rate first.

107

In contrast to the single shared I/O netvork, the computing for each

application rate group is assumed to have its own dedicated processor.

Once the input I/0 activity for a rate group is completed, the computing

activity begins. At the conclusion of the computing activity the control

function starts the output I/0 activity. When the output activity for that

rate group is completed, the control function starts the next rate group

scheduled for that minor frame. Note that this assumes that a rate group

does not relinquish the network for lower priority activity until the

completion of its output I/0 activity. The final control assumption is

that all rate groups are scheduled for initial execution at the very first

minor frame.

The remaining initial model assumptions deal with the I/O activity

duration. The two major elements are DIU processing and the duration of the

command and response messages. The first element to be discussed is DIU

processing. The system operates in a command-response mode. The

application rate group sends an I/O message containing a unique operation

code to each DIU in sequential order. If appropriate, the DIU returns a

response message. The command message and response message (optional) pair

that is the basis for communication with devices on a single DIU is termed

a transaction. The unique operation code sent in the command message

causes a sequence of simple DIU operations that reads sensors or actuator

status registers or writes to actuator command registers. Additionally,

the DIU formats any resulting sensor data into a response message and

transmits it as needed. The DIU requires some overhead processing time to

decode and verify the message and prepare the response message. The times

assumed for all operations in the timing estimate are illustrated in figure

4.1.3-i.

The second major I/O activity element is the duration of the command and

response messages sent on the IlO network. The transmission rate on the

I/0 network is 2 megabits per second. A primitive format assumed for these

messages is illustrated in figure 4.1.3-2. The input I/0 activity for a

rate group consists of a sequence of transactions with all its DIUs. Each

transaction consists of a sensor command frame followed by DIU processing

as described above and finally a sensor response frame. The output I/O

108

Operation

Sensor read

Actuator command

Actuator safe command

Actuator status read

Actuator position read

DIU overhead

Execution time/

operation (p.s)

15

5

5

5

15

10

Figure 4. 1.3-1. DIU Operation Times

109'

Sensor command frame

B W

Sensor response frame

B W W W

Actuator command frame

B W W W W

DDn

Legend:

A - DIU address
OPSEQ - DIU operationsequence

DO - Devicedata
B - Byte
W - Word

Figure 4.1.3-2. Primitive DIU Command Response Assumptions

110

activity consists of a sequence of output-only transactions for all the

appropriate DIUs. These output-only transactions contain only an actuator

command frame. The equations describing the duration of input and output

I/0 activity are detailed in figure 4.1.3-3.

Flight Control Major Group

The sensor and actuator data transfer requirements for the flight control

group are illustrated in figure 4.1.3-4 (DIU names are shown In flg.

3.2.1-1). This figure lists the specific number of words required by each

DIU within each rate group for the application functions allocated to the

flight control group. Evaluation of I/O activity duration data yields the

results summarized in figure 4.1.3-5. The computing duration is based on

execution of the allocated control subfunctions on a 3 mips processor. The

mean computing workload for each control function (less the allowance for

growth) was taken from section 4 of reference A. A timeline for the

application activity during a major frame is illustrated in figure 4.1.3-6.

Figure 4.1.3-6 shows an overlap in the application computing between the

I00 Bz rate and the 25 Ez rate. Thls indicates that the rate groups will

contend for the computing processor in this organization. The major

characteristics of time delay for this organization can also be seen in the

figure. The values are clearly a fraction of a single minor frame, thus

well below the update rate period criterion.

Engine Control Group

The sensor and actuator data transfer requirements for each engine control

group are illustrated in figure 4.1.3-7. The resulting input and output

I/O activity duration along with the computing duration are shown in figure

4.1.3-8. A timeline for the application activity by rate during a major

frame is illustrated in figure 4.1.3-9.

It is clear that the engine control group is very lightly loaded by the

application when compared to the flight control group. No timing problems

are apparent at this stage of the performance development.

111

(Eqn 1) input = time to transmit sensor command frames + time to execute sensor command frames +
time to transmit sensor response frames

(Eqn 2) output, time to transmit actuator command frames + time to execute actuator command frames

Time to transmit sensor command frames:

= # input command frames X time to transmit word X words/input command frame

Time to execute sensor command frames:

- # input command frames X DIU overhead + total # of sensor reads X sensor read time +
total # of actuator status reads X actuator status read time + total # actuator position reads
X actuator position read time

Time to transmit sensor response _rames:

. total # words in all sensor response frames X time to transmit word

Time to transmit actuator command frames:

. ((# actuator command frames X overhead words/actuator command frame) + total # of
actuator commands + total # of actuator safe commands) X time to transmit word

Time to execute actuator command frames:

- # actuator command frames X DIU + (total # of actuator commands X actuator command
time + total # of actuator safe commands X actuator safe command time

Figure 4.1.3-3. Input-Output Activity Execution

112

Rate

100Hz

Sl

S2

OFL

OFR

IFL

IFR

TEL

TER

Totals

50Hz

Sl

$2

CP1

CP2

CDL

CDR

RL

RR

N

LER

Totals

2S Hz

$1

CP1

Totals

Legend:

DIU opemtloru=

SR AC ASC AS

6

8

1 1 1 1

1 1 1 1

2 1 1 1

2 1 1 1

1 1 1 1

2 1 1 1

21 6 6 6

2

2

3

3

1

1

1

1

1

3

10 8

SR - Sensor read
AC - Actuator command
AS(3 - Actuator safe command
AS - Actuator status
AP - Actuator position

1 1

1 1

1 1

1 1

1 1

3 3

8 8

Sensor command

frame (words)

AP Ore rhead Data

1 1/2

11/2

1 1 1/2

1 1 1/2

1 11/2

1 1 1/2

1 1 1/2

1 1 1/2

6 12

1 1/2

1 1/2

1 1/2

1 1/2

1 1 1/2

1 1 1/2

1 11/2

1 1 1/2

1 1 1/2

3 1 1/2

8 15

Sensor response Actuator command
frame (words) frame (words)

Overhead Data Overhead Dam

1/2 6

I/2 8

1/2 3 1 1/2 2

1/2 3 1 1/2 2

I/2 4 1 1/2 2

1/2 4 I I/2 2

112 3 1 1/2 2

1/2 4 1 1/2 2

4 33 9 12

1/2 2

112 2

112 3

1/2 3

1/2 2 1 1/2 2

112 2 1 1/2 2

112 2 1 1/2 2

112 2 1 1/2 2

1/2 2 1 1/2 2

112 6 1 1/2 6

5 26 9 16

1 I/2 1/2 1

1 1/2 1/2 1

3 1 2

Figure 4.1.3-4. Flight Control Computer Estimated Application Timing

113

Rate

100
50
25

Inputs (ps)

9O7
778
98

Compute (ps) Outputs (Izs)

1723 288
3016 340
7100

Resulting utilization:

Application computing

Application I/O

F_jure 4.1.3-5.

50.06%

14.83%

Flight Control Computer Estimated Application Timing - Rate Values

114

Appli- , , ' If II I I Ill,,, ,,
cation I ' ' ' ' ' I

0 me 10 me 20 me 30 me 40 me

 onS, ,,,System I : I, ' ' , , , , , , , , , , , I , , , , , l' 'i''''' '' '' I'' ,' '' ''1'' '' ' '' ' ' I

Legend:

FDIR 100Hz 50Hz 25Hz

Figure 4.1.3-6. Flight Control Computer Estimated Application Timing

115

Rm

100Hz

SOHz

23Hz

DIU operabone

SR AC ASC AS AP

3 3 3 3 3

3 3 3 3

7 8 8 8 8

Senior command
fnmw (wolfe)

Overhead Dsm

11/2

11/2

1 1[2

Sensor response
tm_o (vw-ds)

OverhoaKI Data

1/2 9

1/2 23

Actuator command

frame (wo_)

Overhead Data

I I/2 6

1 1/2 6

1 I/2 16

L_ond:

SR - Sensor re_l
AC - Aclua_' command
ASC - Actuax _fe command
AS - AcaJa_Orstatus
AP - Actuator poeition

F_jure 4.1.3-7. Er_gine Control Computer Estimate Application 77ruing

116

Rate Input 0_s) Compute (ps) Output 0J_)

100

50

25

213

120

475

158

94

1293

100

100

230

Resulting utUlzatlon:

Application computing
Application I/O

Figure 4.1.3-8.

5.28%
6.17%

Engine Control Computer Estimated Application Timing - Rate Values

11"_

Appli-
cation

_J1F-] I1

,ILJI,,,,, =n,===,,== =, ,rll,,,,,,,, ,n,, ,
I '''''''I I '' ' I'',,,,,, : I,, :, :I III I

0 mll 10 mll 20 roll 30 mil 40 ms

'' ' :1 , ,,,,,,,,I,,,,:, : _:1,,,, , : : :1 !system I ''' ' _ '

FDIR 100Hz 50Hz 25Hz

Figure 4.1.3-9. Engine Control Timing - Estimated Application Timing

118

4.1.4 Initial AIPS Timing

The next phase in the performance model development adds more detail to the

modeling of the I/O activity. The elements of the AIPS-based candidate

configuration are shown in figure 4.1.4-1. One aspect o£ AIPS operation is

the exact voting of output data and the source-congruent voted exchange of

input data across FTP channels. The model of I/O activity duration

presented in the previous section is expanded to include this voting

process, in which the IOP uses the data exchange.

The I0P executes some preprocessing and postprocessing functions for the

I/O activity. The IOP prepares each command frame for execution by loading

the input/output sequencer (IOS). Similarly, the IOP completes processing

of sensor response frames (input data) by unloading the IOS. Before

sending actuator command frames, the IOP votes all of the associated data

while loading the IOS. Similarly, after all sensor response frames are

received the data are distributed to all PTP channels via the data

exchange. Since the sensor command frames for the input activity do not

change from cycle to cycle, it is assumed that the IOP does not vote the

associated data. Once loading is complete, the IOS sends command frames to

the DIU and receives any response frames, executing without IOP involvement

until all the transactions in the chain are completed. The IOS is assumed

to require 10 microseconds for overhead processing between consecutive

network transactions. This is called transaction turnaround time.

In this phase, each rate group is now assumed to have its own CP and IOP.

The rate group computing is explicitly allocated to the CP. The assumed

sequencing and control function must now arbitrate between the rate groups

for the use of the single network. The extra system loading due to the

output voting and input distribution causes some additional delay in the

completion of lower priority output I/0 activity due to more urgent high

priority input I/O activity.

The speed of the data exchange used to calculate the duration of I0P

involvement in the I/0 activity was 6 microseconds per word for loading the

IOS and 8 microseconds per word for unloading the IOS. There were two

119

A

FTP
channels

VO se

_
Data
exchange

B
r_o_em_lm_n_,

I

!

I

!

|

!

'C

' Network nodes
!

legend:

CP - Computational processor

lOP - Input/output processor

lOS - Input/output sequencer
DIU - Device interface unit

Figure 4.1.4-1. Application I/0 Operation

&

120

further changes to the modeling of the I/O activity in this initial AIPS

timing phase. First, the actual AIPS network protocol is used for data

transfer over the network (fig. 4.1.4-2). This figure also indicates the

amount of data that must pass through the data exchange for each actuator

command frame and sensor response frame. Second, the DIU fixed overhead

tlme was increased to 20 microseconds. The overall I/O activity tlme

equations for the initial AIPS timing estimate are illustrated as equation

3 and equation 4 in figure 4.1.4-3.

Flight Control Group

The phasing of activity in the flight control group was altered slightly by

changing the initial scheduling of the 25 Hz rate group. Rather than start

all three rate groups in the very first minor frame, the activity for the

25 Hz is offset by starting It in the second minor frame. The sensor and

actuator data requirements for the flight control group are updated to

reflect the data exchange usage and the more extensive high level data link

control (HDLC) frame formats, as illustrated in figure 4.1.4-4. The

resulting timing data are summarized in figure 4.1.4-5. A timeline of this

information is illustrated in figure 4.1.4-6.

Two problems are observed in figure 4.1.4-6. First, there is an overlap in

the second and fourth minor frame between the i00 Hz input activity and the

50 Hz output activity in the IOP. Second, there is overlap between the

100 _z application processing and 25 Bz application processing in the CP.

This indicates that contention for the processor will occur with this

initial AIPS organization. Time delay is still well within the one update

period criteria.

Engine Control Group

The sensor and actuator data requirements for each engine control group are

updated and shown in figure 4.1.4-7. A summary of the resulting I/O

activity duration data is presented in figure 4.1.4-8. A new timeline is

illustrated in figure 4.1.4-9. There are no apparent timing problems.

121

B B B

Actuator command frame
Sensor command frame

W W W W W W

OPSEQ DO1 DO2 DDN check FCS

V

Plus count byte - Output packet (Data exchange during load)

J

B

Sensor response frame

B B B W W W W W W

I I" I ° I °°,1°,1 Ioo !so0check FCS

J
V

Plus 5 byte transaction status data. Input packet (Data exchange during load)

Legend:

F ° HDLC flag
A - HDLC address

C - HDLC control (used to check address)
W - 16 bit work

OPSEQ - Commanded operation sequence
DD - Device data

FCS - HDLC frame check sequence

B - 8-bit byte

F_ure 4.1.4-2. HDLC Protocol - DIU Command�Response Frame

B

122

(Eqn3)input - timetotransmitsensorcommandframes+timetoexecutesensorcommandframes+
timetotransmitsensorresponseframes+timetounloadsensorresponse

(Eqn4)output-timeto load actuator commands + time to transmit actuator command frames + time to
execute actuator command frames

Time to transmit sensor command frames:

- # input command frames X time to transmit word X words/input command frame

Time to execute sensor command frames:

= # input command frames X DIU overhead + total # of sensor reads X sensor read time +
total # of actuator status reads X actuator status read time + total # actuator position reads
X actuator position read time

Time to transmit sensor response frames:

- total # words in all sensor response frames X time to transmit word

Time to unload response:
- total # of response words in all sensor response frames X data exchange unload rate

Time to load actuator commends:

- total # of actuator commands to load X data exchange load rate

Time to transmit actuator commend frame:

- (# actuator command frames X overhead words/actuator command frame) + (total # of
actuator commands + total # of actuator safe commands) X time to transmit word

Time to execute actuator command frame:

- # actuator command frames X DIU + (total # of actuator commands X actuator command
time + total # of actuator safe commands X actuator safe command time

Figure 4.1.4-3. Input-Output Activity Timing for/nitia/A/PS Timing

123

Rate

100Hz

$1

$2

OFL

OFR

IFL

IFR

TEL

TER

Totals

50 Hz

S_

$2

CP1

CP2

CDL

CDR

RL

RR

N

LER

Totals

25 Hz

S1

CP1

Totals

Logend:

DIU operations

SR AC ASC AS

6

6

I I I I

1 1 1 1

2 1 1 1

2 1 1 1

1 1 1 1

2 1 1 1

21 6 6 6

2

2

3

3

1

1

1

1

1

3

10 8

SR - Sensor read
AC - Actuator command
ASC - Actuator safe command
AS - Actuator |lalus

AP - Actuator position

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

3 3 3

8 8 8

Senso¢ command Sensor response Dat

frame(words) frame(words) exchange
of r_ipo,-,_

AP Overhead Dma Overhead Dam data (words)

5 S 8 11 112

5 5 8 11 112

1 5 5 3 8 1/2

1 5 5 3 8 112

I 5 5 4 9 I/2

1 5 5 4 9 112

1 5 5 3 81/2

I 5 5 4 9 112

6 40 40 33 77

Actuator command

frame (words)

Overhead Data

5 2

5 2

5 2

5 2

$ 2

S 2

30 12

5 5 2 7 1/2

5 5 2 7 1/2

5 5 3 8 1/2

5 5 3 8 112

S 5 2 7 112

5 5 2 7 112

5 5 2 7 112

5 5 2 7 1/2

5 5 2 7 1/2

5 5 6 11 112

50 50 26 81

Data
exchange
of output
command

dam (words)

5 112

5 I12

5 I12

5 I/2

5 1/2

5 1/2

33

5 5 1 4 112

5 5 1 4 1/2

10 10 2 9

Figure4.1.4-4. FlightControlComputerInitialAIPSApplicatior_Timing

5 2 5 1/2

5 2 5 1/2

.5 2 5 1/2

5 2 5 1/2

5 2 5 1/2

,5 6 9 1/2

30 16 37

124

Rate

100

50

25

Resulting utilization:

C,,P 50.06%

lOP 25.84%

Network 32.28%

Figure 4.1.4-5.

Network

input _s)

1579

1618

266

DX of

sensor

data _s)

1232

1296

144

Compute _s)

1723

3016

7100

DX of
actuator

data _s)

396

444

Network

output (p.s)

476

628

Flight Control Computer Initial AIPS Application Timing. Rate Values

125

CpI , , , | , , , , , , , , , I
I a I I i I I i I i I ' I I I I I I i I i I i

0 ms 10 mI 20 ms 30 ms 40 ms

i,n, ,,h nn,=,h,n,,,,
lOP ', ,' I '1,I " '''1'''11" = " il ' ' I

FDIR 100Hz 50Hz 25Hz

Figure 4.1.4-6. Flight Control Computer Initial AIPS Application Timing

126

Rate

100Hz

50 Hz

25 Hz

DIU o_

SR AC ASC AS

3 3 3 3

3 3 3

7 8 4 6

Sensor command

frame (word=)

AP Overhead Oata

3 5

3 5

8 5

Senior relmonle
frame (words)

Overhead Dam

5 9

5 6

5 23

Data
exchange
of response
data (words)

14 1/2

11 1/2

28 1/2

Actuator command
frame (words)

Overhead Data

5 6

5 6

5 16

Oar=

exchange

of output
command
data (words)

91/2

91/2

191/2

Legend:

SR - Sensor read
AC - Actuator command
ASC - Actuator safe command
AS - Ac_l_or status
AP - Actuator position

Figure4.1.4-7. EngineControlComputerInitialAIPS Application77ming

127

Rate

100

50

25

Reeultlng

CP

lOP

Network

utilization:

Network

input _s)

287

218

335

DXof

sensor
data _s)

116

92

228

Compute _.s)

158

94

1293

DX of
actuator

data _s)

57

57

117

Network

output (_s)

148

148

278

5.28%

3.34%

7.71%

Figure 4.1.4-8. Engine Control Computer Initial AIPS Application Timing - Rate Values

128

0ms 10ms 20ms 30ms 40ms

,oPI"!!,I,,,,,,,,,,,,,,,,,,,,11,,,,,,,,,",,,,,,,,,I
I I I I I I I I I ! I I I I I I I I I I I I I ! | i I I I i I I I I I I I

0 ms 10 ms 20 ms 30 ms 40 ms

,o nn,,,,,,,,,,
Network '''''''l '''''''''I'''''''''I'°'_.''''I

0 ms 10 ms 20 ms 30 ms 40 ms

Legend:

100Hz 50Hz 25Hz

Figure 4.1.4-9. Engine Control Computer Initial AIPS Application Timing

129

4.1.5 Revised kIPS Timing

In the revised AIPS timing phase of the performance model development the

overall I/O activity is reorganized by grouping the sensor read input I/0

activity and actuator command output I/O activity into a single network

activity per rate group. This I/O organization is referred to as grouped

I/O. In this strategy, all sensor read operations and actuator write

operations within a single DIU are combined into one transaction per rate

group. The transmission of the actuator commands from the previous control

cycle is combined with the transmission of the sensor read commands for the

current control cycle. This reduces the loading on the I/O network because

DIUs that have both sensors and actuators are now only accessed once per

application cycle. As a consequence, control law time delay will increase.

The equation used to calculate the duration of the IlO activity is shown in

figure 4.1.5-1. The sequencing and control function now only keeps track

of one I/O activity per rate group. A control cycle begins with the

grouped I/O activity that transmits the commands from the previous cycle

and requests sensor data for the current cycle. Since the I/O activity

starts with loading actuator commands, the lOP activity is usually the

first action in a control cycle.

The final change to the model is the assumption of a single CP and I0P that

must be shared by the different rate groups. It is assumed that the

control function allocates the CP or the IOP to the fastest rate group

needing service.

Flight Control Group

The sensor and actuator data requirements for the flight control group,

reflecting the new I/O organization, are illustrated in figure 4.1.5-2.

Note that the data that previously appeared in the actuator command frame

now appears in the sensor command frame column. Also the total number of

frames is reduced by the number of actuator command frames. The revised

I/O activity duration data are summarized in figure 4.1.5-3. A timeline is

presented in figure 4.1.5-4 for the flight control group. The effect of

130

(Eqn 5) network activity = time to load actuator commands + time to transmit grouped sensor/
actuator commands + time to execute grouped sensor/actuator command
frames + time to transmit response frames + time to unload sensor responses

Time to load actuator commands:

- total # of actuator commands to load X data exchange load rate

Time to transmit grouped sensor/actuator commands:
- ((# command frames X words/command frame) + total # actuator commands + total number

actuator safe commands) X time to transmit word

Time to execute grouped sensor/actuator command h'ame:
- # command frames X DIU overhead + Total # sensor reads X sensor read time + total #

actuator command X actuator command time + total # actuator safe commands X actuator
safe command time + Total # actuator status reads X actuator status time + total # actuator

positions X actuator position time

Time to transmit response frames:
- ((total # command frames X words/response frame) + total # actuator positions + total #

actuator status + total # sensor) X time to transmit word + total # command frames X
transaction turnaround time

Time to unload response:
= total # of response words to data exchange X data exchange unload rate

Figure 4.1.5-1. Input-Output Activity Execution

131

Rate

100Hz

SI

$2

OFL

OFR

IFI

IFR

TEL

TER

50Hz

$I

S2

CPI

CP2

COL

CDR

RL

RR

N

LER

To_e

25Hz

$I

CPI

Totals

Legend:

DIU operation=

SR AC AS(:: AS

6

6

1 1 1 1

1 1 1 1

2 1 1 1

2 1 1 1

1 1 1 1

2 1 1 1

21 6 6 6

2

2

3

3

I

1

I

I

I

3

I0 8

SR - Sensor read
AC - Aczuamr command
ASC - Ac_uato_ safe command
AS - Actuator status

AP - Ac[uator pos_t_on

1 1

1 1

1 1

1 1

I 1

3 3

8 8

Sensor command

frame (word=)

AP Overhead Data

5

5

1 5 2

1 5 2

1 5 2

1 5 2

1 5 2

1 5 2

6 40 12

5

5

5

5

1 5 2

1 5 2

1 5 2

1 5 2

1 5 2

3 5 8

8 50 16

5

5

10

Data

excNmge
of output
command

dala (words) Overhead

5

5

5 1/2 5

51/2 5

5 1/2 5

5 I/2 5

5 I/2 5

5 1/2 5

33 40

5

5

5

5

5 1/2 5

5 112 5

5 112 5

5 I/2 5

5 1/2 5

9 1/2 5

37 50

5

5

10

Senior response
frame (words)

Data

6

8

3

3

4

4

3

4

12

2

2

3

3

2

2

2

2

2

6

16

F_gure 4.1.5-2. Flight Control Computer Revised AIPS Application 77ming

Data

exchange
of r,;s_,-,_
dam (words)

11 1/2

11 1/2

8 112

8 112

9 1/2

9 I/2

8 1/2

9 1/2

77

7 1/2

7 1/2

8 1/2

8 1/2

7 1/2

71/2

7 112

7 1/2

7 112

11 1/2

81

4 I12

4 112

9

132

Rate

IO0

50

25

Load
command

396

444

Network
command

1735

1842

266

Unload

response
I

1232

1296

144

Compute

1723

3016

7100

Resulting utilization:

CP 50.06%

I/0 25.34%

Network 27.23%

Figure 4.1.5-3. Flight Control Computer Revised AIPS Application Timing - Rate Values

133

I
I | l I I I | i I I I I | I i I I i I I I I I | I I I a | |

0 ms 10 ms 20 ms 30 ms 40 ms

lOP ', I " " i ' ' ' ' ' ' ' ' ' I ' ' I I

,,, III lllll::l,,, ' I

Legend:

FDIR 100Hz 50Hz 25Hz

Figure 4. 1.5-4. Flight Control Computer Revised Ali'S Application Timing

134

the change to grouped I/0 is to reduce somewhat the network use and to

increase the system time delay. As a result of the change, the time delay

is nov approximately one update period.

The performance data developed will be used to form the basis for the

simulation model. Other details of the application timing requirements

must now be considered. The basic detail of the applicatlon workload has

been determined, but certain key interactions due to resource contention,

fault processing, etc., require more sophisticated analysls methods. At

this point in the development we are ready to build a simulation model.

But first, based on the initial assessment of the architecture

configuration, we must address critical areas for validation and what

experiments will be run with the simulation.

4.2 Critical Validation Issues

This section describes some high-level critical performance-related

validation issues for the candidate architecture. These critical issues

involve ways in which timing performance can prevent safe operation.

Special situations or operating circumstances can be a key factor. These

critical validation issues are identified to drive the development of the

simulation model so that they can then be studied early in the design cycle

when the cost benefit impact of improvements is very favorable.

Two performance-related issues are to be studied in this effort. The first

is the effect on performance of the relative phasing of the application

activity and the system failure detection, identification and

reconfiguration (FDIR) activity. The second is the effect on the

application activity of the I/0 network repair actions.

4.2.1Application/FDDg Coordination

The execution of the application cycle (computing processes in the CP and

I/0 activity processing in the 10P) will be affected by the execution of

the system FDIR processes. FDZR protects the computing integrity of the

135

FTP channel. Certain FTP failures are catastrophic if not handled within a

few application cycles. FDIR executes at the rate of the fastest

application cycle to guarantee rapid fault reaction. Each FTP channel has

a watchdog timer for failure protection; FDIR must reset this timer within

narrow tolerances. In temporary application overload situations, then,

FDIR has the most stringent timing requirement and must therefore have

priority over the application processing. The concern to be analyzed is

whether certain phasings between scheduled application execution and the

FDIR process can degrade performance unacceptably. If performance can be

significantly affected, a mechanism to control the relative phasing will be

required.

4.2.2 IlO Network Repair

Each major group in the reference configuration has two reconfignrable I/O

networks. The sensors and actuators are distributed between these networks

for fault-tolerant operation. Nhen a failure brings down one network, the

application continues using the sensors and actuators accessible via the

other network. The major concern is the interactions between the repair

activity and the application activity.

Application I/O activity is terminated on the faulty network for the

duration of the repair activity. The system is therefore vulnerable if a

fault occurs on the second network before the first network is repaired.

The likelihood of this catastrophic event is dependent on the duration of

the network repair. Thus the network repair duration is a critical issue.

The repair activity interacts with the nominal execution of the application

functions. The repair algorithms involve many processing and I/O activity

steps using the IOP and the network. Timely execution of repair is

affected by the application's need to communicate over the unfaulted

network, which also involves IOP processing. The timing performance of the

application must be acceptable during the repair activity. Because of the

complexity of the interaction of the repair activity and the application,

the duration and effect of the repair activity is addressed most

effectively with simulation techniques.

136'

Two I/O network repair strategies are evaluated: one-shot and full regrov.

The one-shot strategy is characterized by rapid diagnosis and specific

repair actions. Full regrov is the same process used to grow the I/O

network at power on. It uses a robust sequence of steps to grow a path to

all good devices reachable with the unfailed network elements.

In the one-shot repair strategy, when a communication fault occurs, a chain

that accesses all the nodes on the failed network is executed. Based on

the nodes that did not respond, the network manager assumes that an I/O

llnk has failed and attempts to repair the failed link by enabling a spare

llnk that is connected to the lost nodes. If communication has been

restored to all the lost nodes, the link failure assumption was correct and

the network is returned to service. However, if some of the lost nodes

remain unreachable, the link failure assumption was wrong and a process

associated vlth a node failure hypothesis is invoked. If at any point in

the one-shot process it becomes clear that progress is impossible, for any

reason, a robust regrow algorithm is begun. It should be noted that the

repair algorithm implemented in the model for the current experiments does

not support the repair of a node failure or the reversion to a regrov

strategy.

The full regrow repair strategy makes no attempt to determine the type of

failure; it uses a robust algorithm to establish a new I/O network topology

as if the power had just been applied. Unlike the one-shot repair

strategy, the regrow algorithm can establish a path to all reachable nodes

(and therefore DIUs) regardless of the type of failure.

4.3 Define Experiments

This section describes the experiments to be performed with the IAPSA II

simulation model. It should be noted that experiment 1 was conducted

earlier in the program to develop a common experimentation interface.

Therefore the experiment numbering for the preliminary simulation

experiments begins with experiment 2.

137

4.3.1 Experiment Configurations

The reference configuration comprises three major groups: a flight control

group and an engine control group for each engine. The composition of

these groups is described in section 3. The experimental concept is to

perform experiments on two separate models: a model of the flight control

group and a model of the engine control group. This allows comparison

between a large, heavily loaded system and a relatively small, lightly

loaded system.

4.3.2 Experiment Procedure

The variability of the processing needs of the application and the system

services was captured by modeling elements as stochastic processes. To

address the statistical characteristics of the reference configuration,

multlple samples of the experiment variables were collected. The

experiment data were then plotted on histograms to assess the statistical

aspects of the system behavior. Data from 100 major frames were used to

evaluate the general characteristics of the application's behavior.

The I/O network repair runs were intended to determine how the

application's behavior changes during the repair of a fault. Fifty runs of

each failure case were conducted to randomly cover the time of fault

occurrence.

4.3.3 IIO Hetvork Repair Tim (Experimt 2)

The objective of experiment 2 was to measure the time needed to

successfully return a network to service after it experiences a network

fault. This experiment also evaluated the effect of the additional network

repair processing on the timing performance of the application. This

experiment evaluated both configurations, flight control and engine

control. Each active link in the network was failed passively in this

experiment. The link is failed at a random time during the second major

frame and the experiment run terminated one major frame after the

completion of the I/O repair activity.

138

The experiments were run with both the rapid one-shot repair strategy and a

full regrov repair strategy. This scoped the minimum and maximum possible

repair times for single faults. Each link failure case was repeated 50

times with the fault occurring at a random time with respect to the major

frame. This allowed a coarse assessment of the relationship between fault

occurrence time and network repair time.

4.3.4 I/0 Scheduling (Rxperinent 3)

The purpose of experiment 3 was to evaluate the effect of the I/O

scheduling mechanism on the performance of the application during normal

operation. The system services software has two mechanisms available to

the application designer to schedule the application I/O activity,

scheduled I/O and on-demand I/O. In on-demand I/O, at the beginning of

each cycle, the application executing in the CP makes an I/O request and

then suspends itself. When the I/O has completed, the application process

resumes. In scheduled I/O, the system software executing in the IOP makes

the I/O request periodically. The application computing in the CP is

scheduled every cycle by the completion of the I/0 activity.

Two I/O activity organization schemes were also considered: separated IlO

and grouped I/O, which were briefly discussed in section 4.1. In separated

I/O, the I/O activity for the rate group is separated into two parts, the

input I/O activity and the output I/O activity. In the grouped IlO scheme,

all of the I/O activity is grouped together and performed at the same time.

This experiment evaluated the effect of these options on the application

performance. There is a single experiment run for each of the IlO

scheduling mechanism and I/O activity organization combinations. The

duration of each run was 102 major application frames.

4.3.5 FDIR/Application Phasing (Experiment 4)

The objective of experiment 4 was to evaluate the effect of the relative

phasing of the application activity and the system FDIR process. The FDIR

and application demands were evaluated during normal operation. The system

139

tlme scheduler assumed for this study has a granularity of one millisecond.

That is, time-scheduled tasks can only be specified to the nearest even

millisecond. The i0 specific relative phasing situations possible because

of the 10 millisecond minor frame period were analyzed. In each simulation

It is assumed that the independent FDIR processes in the CP and the IOP are

scheduled to run at the same time. The experiment was defined for both the

flight control and engine control configurations, for both I/O scheduling

mechanisms, and for both I/O activity organizations.

4.3.6 CP, IOP, I/0 System, I/0 Network Utilization (Experiment 5)

The purpose of experiment 5 was to estimate the use of the key candidate

system resources during normal operation. Major areas of resource

contention were modeled for this experiment. This includes contention

between the different application rate groups, as well as the previously

described contention between the application rate groups and the time-

critical FDIR function. A preemptive priority sequencing and control

algorithm Is modeled to control processor allocation. Accounting for

contention produced a more realistic growth capability estimate and allowed

an evaluation of the effect of execution variability. Measurements

representative of each of the application performance requirements defined

in section 4.1 are made for normal operation and the network failure cases.

The application performance data for failure cases are only collected

during the fault recovery action. Thus comparison of failed and non-failed

cases will show how the operation changes during the fault recovery

process.

4.3.7 Experiment Execution Strategy

The experiment configurations for data collection are illustrated in table

4.3.7-1. The experiments were performed in the following order: (I) FDIR/

application phasing (experiment 4); (2) I/O scheduling mechanism

(experiment 3); and (3) I/O link repair (experiment 2). The CP, IOP, I/O

system, I/O network utilization experiment 5 data were collected during the

running of the previous experiments. Table 4.3.7-2 defines the number of

140

Table 4.3. 7-1. Experiment Configuration

Expedmenl
No.

Configuration ID

1
2
3

4
5

6

]
8
9

10

11

12

13

14
15
16

Layout

Flight control
Flight control
Flight control

Flight control

Flight control
Flight control

Engine control
Engine control
Engine control

Flight control regrow
repair strategy
Flight control one-shot
repair strategy
Engine control regrow
repair strategy
Engine control one-shot

repair strategy

Engine control
Engine control
Engine control

FDIR Coordination

Yes

Yes
Yes

No
No
No

Yes
Yes
Yes

Yes

Yes

Yes

Yes

No
No
No

I/0 Scheduling

On demand
On demand
Scheduled

On demand
On demand
Scheduled

On demand
On demand
Scheduled

Scheduled

Scheduled

On demand

On demand

On demand
On demand
Scheduled

I/O Grouping

Gmuped
Separated
Grouped

Gmuped
Separated
Gmuped

Gmuped
Separated
Gmuped

Gmuped

Gmuped

Gmuped

Gmuped

Grouped
Separated
Grouped

141

Table 4. 3. 7-2.

Experiment ID

4

Configuration ID

6
14
15
16

10
11
12
13

Configuration for Experiment Execution

No. of phase
or faults

10
10
10
10

18
18
4
4

Range of run IDs

1,.,50

1..50
1..50
1..50

Total run potential
I

10
10
10
10

900
900
200
200

142

of possible faults or relative FDIR phasings considered for each experiment

configuration, as well as the number of repetitions for each link fault

experiment.

An actual application's demands will not necessarily grow uniformly across

all the system resources. Therefore, to assess growth capability

utilization was measured for four key resources: the CP, IOP, I/O system,

and I/O network. The CP utilization measures its use in computing the

application control laws and the system FDIR. The IOP utilization measures

its use in the loading and unloading of application I/O activity, network

manager processing and system FDIR. The I/0 system utilization measures

the end to end operation of the I/O networks for application activity. The

I/O system utilization starts when an application I/O request is made and

ends when all application activity is complete and the system can

immediately respond to a new request. This utilization figure is intended

to measure the ability of the I/O system to handle additional I/O requests.

The I/O network utilization measures the time from the beginning to the end

of IOS execution of I/O activity.

Deadline margin is a figure of merit that indicates how yell the system is

meeting its periodic control cycle requirements, that is, how close the

system is to missing a time-critical action. The critical actions include

updating an input or an output set of I/O data to complete the processing

for one control cycle before the scheduled starting time for the next

cycle.

The time delay figure of merit is an overall indicator of time delay for a

particular rate group. The value is computed as the difference between the

start of an I/0 activity in one cycle and the conclusion of an I/0 activity

in the next cycle. Deadline margin and time delay were illustrated in

figure 4.1.1-1.

4.4 Build Hodel

This section describes the development of a simulation that models the

behavior of an implementation concept for the reference configuration.

143

4.4.1 Performance Tool

Several tools were evaluated for developing the IAPSA II performance model.

A major shortcoming of most tools evaluated yam their inability to

represent algorithms. This capability is necessary since it allows some

key timing parameters to be established using prototype algorithms.

Boeing Advanced Systems selected the Discrete Event Network (DENET)

simulation language for the development of the simulation model for the

IAPSA II reference configuration. DENET was developed at the University of

Wisconsin's computer science department by Dr. Miron Livny. It is a

discrete event simulation language based on the Discrete Event System

Specification modeling methodology. Thls methodology Is complemented vlth

the MODULA II programming language, which results in a simulation language

capable of developing modular system simulations at any level of detail.

This feature allows the DENET tool to represent algorithms.

DENET simulations are composed of discrete event modules (DEVM) and arcs,

which connect outputs of one DEVM to inputs of another. Each DEVM is

programmed to contain some function of the system; the function can be

either a hlgh-level abstraction or a very detailed emulation. DEVMs

receive input and generate output through ports. The ports of DEVMs are

interconnected with arcs. A simulation model consists of a group of DEVMS

connected together with arcs. Each instance of a DEVM is characterized

with input parameters. The input parameters allow the module to

parameterize the specific DEVM's behavior so that modular building blocks

can be supported.

Discrete Event Nodule

A fundamental feature of a DEVM is its connections with other DEVMs. The

connections are implemented with input ports and output ports. A port is

created on a DEVM when a connection is made to another DEVM with an ARC.

The orientation of the ARC defines whether a port is an input port or an

output port. DEVM ports are associated with either an INPUT event or an

output variable. Each INPUT event and OUTPUT variable has an associated

144

data type for transferring information when the variable is assigned. The

data type can be a simple Boolean or an integer, or can be a composite type

such as a record. Output from a DEVM is generated with an assignment

statement to an output variable. The output port is generally connected to

an input port on another DEVM. At the time an output is assigned, an input

event is triggered in the destination module. The input event is the

mechanism by which the modeler controls the processing in the DEVM. The

resulting processing can change the state of the DEVM based on the received

data, perform a complex algorithm, and/or schedule an output port

assignment to take place at a defined future time.

An example of an input event and output variable for a DEVM that models an

AIPS node (AIPSNODE) is shown in figure 4.4.1-I. The input event has the

name NodeCommandFrame and the output variable is named NodeResponseFrame.

When an input event occurs, the AIPSNODE processing is initiated. An

example of the event-drlven processing is shown in the following AIPSNODE

DEVM description. The first action taken, if the input event message

corresponds to an enabled node port, is to assign the received message to

the output variables corresponding to all other enabled node ports. The

second action is to examine the message to see if it contained a command

for that specific node. If true, the directed action is taken, and a

response message is generated and assigned to the NodeResponseFrame output

variables corresponding to the node's enabled ports.

ARC Definition

An ARC definition is used to connect output variables of a DEVM to the

input events of other DEVMs, as illustrated in figure 4.4.1-2. This figure

shows half of the connection between two AIPSNODE DEVMs in a network. The

ARC definition, NodeToNode, defines the output port NodeResponseFrame to be

connected to the input port NodeCommandFrame.

Parameter Characterization

The parameters of a DEVM are used to fully characterize the behavior of a

DEVM. One use is the definition of a specific instance of a generic DEVM

148

AIPSNode

InputEvent

NodeCommandFrame I

Output Event

NodeResponseFrame I

Figure 4.4.1-1. DEVM I/0 Definition for AIPS Node

146

NodeCornrnandFrarne)

(,NodeResponseFrarne
NodeToNode = Node connections

Figure 4.4.1-2. ARC Definition for Inter-AIPS

such as the definition of an AIFSNODE illustrated by figure 4.4.1-3. The

generic AIPSNODE DEVM has five parameters| the first two integer values,

NetworkID and NodeNumber, are used to define the specific I/O network node

Interconnections. The SequencerTimeUpper and SequencerTimeLower parameters

are real numbers that define the limits of the uniform distribution that

the AIPSNODE uses to determine the time interval between the reception of a

valid command and the transmission of a response. The InltialConflguration

parameter is used by the AIPSNODE to set the configuration of its ports at

simulation initialization time.

Simalation Topology File

The DENET simulation is set up with a topology file that defines DEVMs,

their parameter values, and their interconnections. An example topology

file illustrating each of these features is shown in figure 4.4.1-4. The

top section indicates that there are five instances of AIPSNODE in this

simulation and that their DEVM numbers are 70 through 74. The next section

shows the Inter-DEVM connections with the NodeToNode ARC definition. An

input/output port combination is created for each connection made with an

ARC connection. Finally, the configuration parameters of each AIPSNODE are

shown. By implementing other functions in DEVMs and defining ARC

definitions, a complete simulation of the reference configuration was

developed.

4.4.2 Simulation Model

The follovlng paragraphs describe the functionality of the DEVMs used in

modeling the reference configuration.

Some problems were encountered during the development of the models for the

AIPS elements because the architecture implementation concept was still in

development. As the model development progressed, certain assumptions were

made about how functions were implemented and how much time each required.

The intent in these cases was to err on the optimistic side. This has

resulted in simulation models that are AIPS-like in overall behavior nut

148'

I I

AIPSNode

NetworklO
NodeNumber

SequenceTtrneLower
SequenceTimeUpper
InitialConfiguration

Figure 4.4.1-3. Parameter Definitions for AIPS Node

149

70..74:= AIPSNode; creates 5 nodes

[70171,72]: • NodeToNode;
[71170,72,73]: = NodeToNode;

[72t70,71,74]: = NodeToNode; Defines internode connections shown above
[73171,74]: • NodeToNode;
[74172,73]: = NodeToNode;

70: = {2 1 0.000315 0.000385

71: = {2 2 0.000315 0.000385
72: = {2 3 0.000315 0.000385
73: = {2 4 0.000315 0.000385
74: = {2 5 0.000315 0.000385

{TTTTF}};

{TTTTF}};

{T T T T F }};Assignsvaluestoparameters ofeach node

|TTTTF}};

{TTTTF}};

Figure 4.4. 1-4. Example Topology File

150

not guaranteed to match any current or future AIPS implementation. Before

describing the specific DEVMs, the steps involved in accomplishing an

application I/O request will be reviewed.

Application I/O Activity

Application I/O activity involves the interaction of many system elements.

The process resulting from a request made by the application computing is

illustrated in figure 4.4.2-1. The figure shows the significant activity

by system element. The IOP responds to the I/O request by loading the

necessary data and transferring control to the IOS. The IOS sends the

individual command frames to the DIUs over the network and collects the

response frames from the DIUs. When the IOS is finlshed, the IOP collects

the DIU responses and makes them available to the CP via the data exchange.

The application can then process the DIU responses. An overview of the

interaction of the DEVMs is provided by the following description of how

this sequence is implemented in the simulation model.

The DEVMs that model the above sequencing are illustrated in figure

4.4.2-2. One application rate group is modeled by one instance of the

application DEVM. When it is time for the application to execute, it makes

a request to the processor DEVM representing the CP. The processor

notifies the application when the application's processing is complete for

the current cycle. The application may then make an IlO request to the I/O

service DEVM, as illustrated in figure 4.4.2-1.

To execute the I/0 request, the I0 service must acquire the IOP to load the

data needed for the current I/O cycle. The IO service then makes a

processing request to the instance of the processor DEVM that models the

IOP sequencing and control function. The processor notifies the IO service

when it has completed the IO service's processing request. At this point

the IO service commands an IOS for each network to execute the I/O

activity.

The IOS DEVM sends messages to the network and collects the responses. All

the DEVMs modeling the network (nodes and DIUs) receive the command frames.

151

CP
ApplicationI --

Data available

"rims

lOP

Network

DIU

Responcp frame

1
V-1
1

Command frame

DIU processing

Figure 4.4.2-1. Application Cycle

Unload lOS

F--I

Network 1

I I

Network 2

\7

E
1 I

I0 Service (SW)

t t 1
Processor

(lOP) II Application (SW)I t Application II

I 1
I Processor(CP)

!
_DIU

O AIPSnode

D IOS

Application

t

Figure 4.4.2-2. Example Application Simulation Topology

152

The DEVM addressed in the command frame transmits a response to the

network. When the IlO activity is complete, the IO service makes another

processing request to the processor DEVM to unload the networks. When the

IO service Is notified that the IOP has completed its request, the IO

service notifies the application DEVM that its I/O request has been

completed.

At this point the application DEVH has sensor data to process. It makes a

request to the instance of the processor DEVM modeling the CP control

function for the appropriate processing time. The following sections

describe these DEVMs in detail.

Processor

Each FTP channel is composed of two CPUs: an I/O processor (IOP) and a

computational processor (CP). All CPs and all IOPs in an FTP execute in

instruction synchronization. This organization is depicted in figure

4.4.2-3(a). For the defined experiments, it can be assumed that the CPs

and the IOPs remain in synchronization. With this assumption, a multiple-

channel FTP can be modeled as a single-channel FTP, as illustrated in

figure 4.4.2-3(b). This modeling simplification is critically dependent on

the operation of multiple IlO networks and the process that ensures that a

multiple-channel FTP remains in synchronization.

As depicted in figure 4.4.2-2, two different instances of the processor

DEVM support the processing requirements of the IlO system and the

application. The key processor DEVM characteristics are listed in figure

4.4.2-4. The processor DEVM models the sequencing and control functions

that execute on either the CP or IOP. This sequencing is based on a

preemptive priority model in which the highest priority process ready for

execution acquires the processor and retains it until it completes or until

a higher priority process becomes ready. The processor maintains a

priority queue of processes waiting to use the processor. When a process

completes, the first element of this queue acquires the processor. If a

process makes a request to use the processor, it is inserted into this

153

Channel A

Channel B

Channel C

CP lOP J_

D"
CP IOP

CP IOP [_

(a) Three channel FTP

CP lOP

B

(b) DENET FTP

D IOS

Figure 4.4.2-3. FTP Model

154

:rocee$or
INPUTS

Event
SubmitProcess
StartSystem
Reset
PmbeReset

PAPA
SystemPriodty
SystemProcessingNeeded
SystemFrequency
ContextSwitchTime
ProcessorReportLevel
ProbeNumber

OUTPUTS
Var

Completed
DeadllneMIssed

Event
ProcessCompleted
RunSystem

Figure 4.4.2-4. Processor DEVM

155

priority queue if its priority is not higher than the process currently

running on the processor. If its priority is higher, it acquires the

processor and the currently running process is inserted into the queue.

Each application process is assigned a priority, with the faster rates

having higher priority. The FDIR process is assigned a priority higher

than the application processes and executes at the rate of the fastest

application. In the IOP, the processing related to an application I/O

activity is assumed to have the same priority as the application computing.

Again, the FDIR is assigned a higher priority than all the application

priorities and executes at the fastest application rate. The processes

related to the repair of the I/O network are assigned a lower priority than

all the application priorities.

Efficiency is a concern for all system services functions. Overhead

processing is required In preemptive priority systems to handle the

different processes. This overhead can dominate a processor's activity,

depending on the sequence in which processes become ready to execute and

the amount of time needed to switch processes. A value of 0.300

millisecond was used to model the time needed for sequencing and control

overhead In the processor DEVM. A process switch is assumed to be an

unlnterruptable operation. In some situations a process can become ready

while another context switch is in progress. In this case the processor

performs two switches. At the completion of the first, the system

recognizes the new higher priority request and immediately switches

processes again.

IO Service

The IO service DEVM models the software functions that execute primarily in

the IOP. This software communicates with the I0S DEVM and the application

DEVM. The key IO service DEVM characteristics are listed in figure

4.4.2-5. The model focuses on the software that controls the sequencing of

pre- and post-processing activity in response to an I/O request. Some IO

service functions reside in the CP for interface reasons. These were

assumed to take negligible processing time in the model.

156

c

IOServlce

Inputs
EVENT

IOServiceRequest
RtnNetworkToService

ProcessorResponse
Reset
ProbeReset

VAR

DataFromlOS

ChainCornpleted

PARA

ManagerlDNetwork2
ApplicationProcesslD
IOPIdentifier
Controlsldentifier

StrategyForReconfiguratlon
IOServiceReportLevel
ChainProcessing100Hz
ChainProcessing50Hz
ChainProcessing25Hz
EndOfChainProcessing 100Hz
EndOfChalnProcessing50Hz
EndOfChainProcessing25Hz
EndOfChainProcesslng Monitor
ProbeNumber

Outputs

VAR

ChainToiOS

ApplicationResponse
IOManager2Response
ManagerServiceRqst
ProcessorRequest
ServlceAvailable

StoplOS

EVENT

IOCompletionPoll
InitializeService

Figure 4.4.2-5. IOService DEVM

157

The I0 service process depicted in figure 4.4.2-6 controls access to the

I/O networks. This model was developed as a result of initial simulation

efforts and differs from the preliminary AIPS design. There are 4 steps to

the execution of an I/O request: load command frame data, start IOS, I/O

completion poll, and unload the response frame data. The IOSs execute the

individual transactions of the I/O activity without IOP involvement. Note

that the IO service was modeled as separate tasks, one dedicated to each

application rate group and one for the network manager. Thls model was

created when a previous version, based on a preliminary AIPS concept, could

not satisfy the flight control application update requirements. The

separate task model allowed some preemptive activity on the IOP without

affecting the IOS execution.

A semaphore was employed to protect the execution of the application IOS

activity. The I/0 network is protected when the IOSs are commanded to

start and released after the I/O completion poll. The modeled approach

minimizes the time that the I/O networks are in a nonpreemptable state and

relies on the preemptive priority scheduler to resolve the contention

between I/O requests from the different application rates and the network

manager. Assigning high priority to faster application rate groups allows

the application activity with the closest deadline to be serviced first.

In the I0 service model the lOP is free for lower priority processing after

it starts the IOSs. The IO service schedules an I/O completion poll using

the underlying system time schedule function. The I/O completion poll

checks for the completion of the network activity for an I/O request and

begins to unload the collected data. Each I/O request has a defined

completion poll interval that guarantees that the activity is complete when

the I/O networks are operating normally. The I/O completion poll occurs at

integer milliseconds of system time. Thls is due to the assumed underlying

system time scheduling granularity of one millisecond.

An example of the contention between application rates in the IO service is

shown In figure 4.4.2-7. The situation is that the 50 Hz rate has an I/O

request that has progressed to its execute state. At this point, the

i00 Hz rate initiates an I/O request. Because the 10P is free, it can

158

oa.o

8
U'J

(1)

159

100 Hz

request

Wait for idle
inetworks

Execute

I/0

completion
poll

J Unload

I

I

I

I

I

I

!

50 Hz

request

tdy Lo!

_ ldY_[reques t

Wait for idle
networks

I/0

completion '

Unload I

Figure 4.4.2.7. I0 System Contention Example

160

process the 100 Hz I/O request until it is time to start the IOSs. The

100 Hz I/O request is then suspended, because the 50 Bz I/O process

controls the semaphore. When the 50 Hz I/O completion poll occurs, the

50 Hz I/O process releases the semaphore making 100 Hz I/O process ready.

The i00 Bz IlO process starts the I0S with the 100 Hz activity, schedules

its own completion poll, and relinquishes the IOP. The 50 Hz data is then

unloaded from the network interfaces because it is the highest priority job

waiting for the IOP.

The IOS execution of network manager I/O activity can take place at the

same time as application IlO activity. When a communication fault occurs

on a network, no further application I/O activity takes place on that

network until the I/O network manager repairs the fault. Thus, during

failure recovery, the application I/O activity will be restricted to one

network and the network manager activity will be restricted to the other

network. There will be contention between the application and the network

manager for the IOP, but the network manager I/O activity is unconstrained

on the network being repaired.

Application

The application is a generic DEVM that models the functionality of a single

application rate group. The application DEVM, whose key characteristics

are listed in figure 4.4.2-8, can be configured to perform the workload of

any flight control or engine rate group. Its execution sequence can be

configured for either on demand or scheduled I/O. The DEVM models data-

dependent processing requirements using a normal workload distribution for

the needs of each application cycle.

Input/Output Sequencer

The I0S DEVM executes chains requested by the IO service DEVM and collects

data resulting from chain execution. It provides the IO service with a

status variable that corresponds to the state of IOS execution. This

status variable indicates whether the I0S has completed the chain it is

executing. The IlO service also has the ability to stop the IOS's

161

AppllcaUon

!INPUTS

EVENT

ResponseAppllcation
ProcessorResponse
Reset

PARA
CPID
IOServicelD

ProcessingTimeMean
ProcessingTlmeSIgma
EnglneAppllcatlon
OnDemand

GroupedlOActivity
Application Pdority
IORequestlnterval
InitialOffset

Appltcationldentifier

OUTPUTS

VAR

RequestApplication
ProcessorRequest

EVENT
CurrentFrarne

Figure 4.4.2-8. Application DEVM

162

execution of a chain at anytime. When commanded to start a chain, the IOS

DEVM sends command frames to the adjacent node and waits for the response

frames as needed until the IIO activity is finished. Its key

characteristics are listed in figure 4.4.2-9.

Node

The I/O network node is the element used to construct the mesh conflgurable

network. During normal operation, the AIPSNODE DEVM node acts a

rebroadcast element. Any activity received on an enabled port is

immediately retransmitted out all the other enabled ports. The AIPSNODE

responds to reconfiguratlon commands addressed to it by changing its port

configuration and then sending a response frame that contains the node's

status. This allows detailed modeling of the network repair activity

directed by the network manager to reconfigure around faults. A null

command to a node results in the node transmitting its status. AIPSNODE

DEV_4s interface with other AIPSNODE DEVMS, IOS DEVMs, or DIU DEVHS. Their

key characteristics are listed in figure 4.4.2-10.

DIU

The DIU DEVM models the network device to which the application sensors and

actuators are connected. The DIU DEVM models the receipt of messages from

the application. The DZU model schedules the transmission of a response

message at a time that reflects the DIU processing time described in

section 4.1. The DIU DEVM, whose key characteristics are listed in figure

4.4.2-11, models the statistical variation of the duration of DIU

processing time.

Netvork Nanager

The network manager is responsible for maintaining communications between

the application process and the DIUs. The 10 service DEVM notifies the

network manager DEVM when the application process encounters a

communication fault. From this point on, the IO service does not execute

any application chains on the faulty I/O network until the network manager

notifies the IO service that the repair is complete.

163

lOS

INPUTS

EVENT

InputTransaction
ChainTo Process

StopChain
Reset

PAPA

NetworklD
RootNodelD
lOServlce ID
NodeComrnandBitsOn Bus

NodeResponseBitsOnBus
ApplicatlonTransmttBtts[0..9][0..9]
ApplicationTransmitBIts[0..9][0..9]
ProbeNumber

OUTPUTS

VAR

OutputTransactlon
IOChainResponse
ChalnFinished

EVENT

EndlOActivity
TransactionTimeOut
DlUWritten

Figure 4.4.2-9. lOS DEVM

164

AlPSNode

INPUTS

EVENT

NodeCommandFrame
Reset

PAPA

NetworklD
NodeNumber

SequenceTImeLower
Sequence'rirneUpper
InitlalConflguration

OUTPUTS

VAR NodeResponseFrame 1

Figure 4.4.2-10. AIPS Node DEVM

165

DlU
INPUTS
EVENT

DIUCommandFmme

PARA
Overhead'llme
Command'rlnles[1..3]

OUTPUTS
VAR

DIUResponseFrame

Figure 4.4.2-11. DIU DEVM

166

The network manager DEVM implements two different types of strategies for

repairing I/O network faults, one-shot and regrow. Prototype algorithms

for both of these strategies are implemented in the DEVM, whose key

characteristics are listed in figure 4.4.2-12. A configuration item in the

IO service DEVM dictates which type of strategy will be used in the current

experiment to repair the I/O network. This allows a common DEVM to be used

for both sets of experiments.

4.4.3 Development Problems with Performance Model

The IO service DEVM presented extreme difficulty during the development of

the simulation model. This was primarily due to the complex functionality

of this process. Modeling difficulty early in the development is probably

a good sign of impending difficulty in the implementation phase. The IO

service was not only a complex function but also had demanding performance

requirements. Performance problems in the early simulation steps led to the

separate task structure for IO service shown in figure 4.4.2-6. As

improbable as it seems, this structure was actually simpler than the

original design. This structure still has some remaining adverse

performance characteristics. This is a good example of the benefit of

performance modeling in exposing concept difficulties early in the design

cycle.

4.4.4 Simulation Input Values

The values used by Boeing for certain simulation timing input parameters

are shown in figures 4.4.4-1 through 4.4.4-3. The AIPS parameters that do

not vary with simulation configuration are illustrated in figure 4.4.4-1.

Most of these parameters relate to time needed by system overhead functions

to support the application activity. Parameters unique to the flight

control configurations are shown in figure 4.4.4-2. Parameters unique to

the engine control configurations are shown in figure 4.4.4-3.

167'

NET MANAGER

INPUTS

EVENT

ServlceRequest

IONetworkResponse
ProcessorResponse
MIssedDeadline
Reset

PARA

NetworklDToManage
ManagerReportLevel
ProcesslngPriority
IOPldentifler

OUTPUTS

VAR

IONetworkRequest
NewNetworkState

ProcessorRequest

Figure 4.4.2-12. Network Manager DEVM

168

DIUprocessingoverhead
Processswitch
Nodeprocessingtime
Transactionturnaroundtime
Nodetransactiontransmissiontime Command

Response

20
300

Uniform(335,385)
10
40
56

PowerupinitializeIOserviceprocessing
Ondemandrequestdelay
Requestprocessing
Chainprocessingoverhead

Endofchainprocessingoverhead
Requestcompletionprocessing
Network manager chain loading time (one network)

100

Uniform (20, 35)
25
50

50
25

Network manager
1 transaction chain
2 transaction chain
4 node monitor chain (one network)
18 node monitor chain (one network)

Network manager end of chain processing time (one network)
1 transaction chain
2 transaction chain
4 node monitor chain (one network)
18 node monitor chain (one network)

18
36
72

324

52
104
208
936

Network manager processing elements

Grow initialize (assume 25/node)
Flight control
Engine control

Compute one transaction chain
Compute two transaction chain
Network response computation
Change network status

Analyze error report
Switch root link processing

Figure 4.4.4-1.

450
100
75

150
50
25

75 + 5 I.LS/portdecision
25

AIPS Time Elements (p.s)

169

Applicationcomputing
i) 100Hz

ii) 50 Hz

iii) 25 Hz

Normal _ = 1723, o = 86)

Normal (jz= 3016, o = 150)

Normal 0z = 7100, o = 355)

DIU command execution
Grouped I/O

100Hz

50Hz

25 Hz

$1 90 + Uniform (0, 10)
$2 90 + Uniform (0, 10)
OR. 45 + Uniform (0, 10)
OFR 45 + Uniform (0, 10)
IFL 60 + Uniform (0, 10)
IFR 60 + Uniform (0, 10)
TEL 45 + Uniform (0, 10)
TER 60 + Uniform (0, 10)

$1 30 + Uniform (0, 10)
$2 30 + Uniform (0, 10)
CPI 45 + Uniform (0, 10)
CP2 45 + Uniform (0, 10)
COL 30 + Uniform (0, 10)
(:;OR 30 + Uniform (0, 10)
RL 30 + Uniform (0, 10)
FIR 30 + Unifomt (0, 10)
N 30 + Uniform (0, 10)
LER 90 + Uniform (0, 10)

$1 15 + Uniform (0, 10)
CP1 15 + Uniform (0, 10)

Chain loading time (2 networks in service)
i) 100Hz 396
ii) 50Hz 444
iii) 25Hz 0

End of chain processing time (2 networks in service)
i) 100Hz 1232
ii) 50Hz 1296
iii) 25Hz 208

Transaction transmission time
100Hz Command

$I 40 88
$2 40 88
OFL 56 64
OFR 56 64
IFL 56 72
IFR 56 72
TEL 56 64
TER 56 72

50Hz
$1 40 56
$2 40 56
CP1 40 64
CP'2 40 64
COL 56 56
CI_ 56 56
RL 56 56
RR 56 56
N 56 56
LER 88 88

25Hz
$1 40 48
CP1 4O 48

Response

Figure 4.4.4-2. Flight Control Time Elements (#s)

170

Applicationcomputing
i) 100Hz
ii) 50Hz
iii) 25Hz

Normal(p.- 175,o= 9)

Normal (Iz- 100, o - 5)

Normal (p.= 1300, c ,, 65)

DIU command execution

Grouped I/O
i) Inlet
ii) Nozzle

iii) Engine

135 + Uniform (0, 10)
90 + Uniform (0, 10)
325 + Uniform (0, 10)

Separated I/O (input only)
i) Inlet
ii) Nozzle

iii) Engine

105 + Uniform (0, 10)
60 + Uniform (0, 10)
265+ Uniform (0, 10)

Chain processing time (2 networks in sen/ice)
i) 100Hz 114
ii) 50 Hz 114
iii) 25 Hz 186

End of chain processing time (2 networks in service)
a) 100Hz 232
b) 50Hz 184
c) 25Hz 456

Transaction transmission time

Grouped I/O
Command Response

Inlet 88 112
Nozzle 88 88
Engine 136 224

Separated I/O
Input Output

Command Response Command Response
Inlet 40 88 88 -
Nozzle 40 112 88 -

Engine 40 224 136 -

Figure 4.4.4-3. Engine Control Time Elements (p.s)

171

4.5 Bvalua t e

This section presents a hlgh-level discussion of the results obtained from

each experiment using DENET. The steps taken to analyze the simulation

data from each experiment are discussed individually. The conclusions

drawn from these results are discussed in section 4.6.

4.5.1 FDIR/&pplication Phasing (F_q_erimnt 4)

This experiment evaluates the effect of the relative phasing of the high-

priority system FDIR process and the application activity. For each

configuration shown in table 4.3.7-I, data were collected from execution of

100 major frames.

Flight Control Group

For two of the configurations (4 and 5), the application was unable to meet

any control cycle deadlines. These two unsuccessful configurations

correspond to the on-demand IlO scheduling option and the separated IIO

configuration options for the flight control group. The simulation result

showed that the flight control group was overloaded to the point that the

application could not perform its function using either of these

organization options. Consequently, configuration 4 and configuration 5

were eliminated as possible candidates.

A summary of the experimental data for configuration 6 (scheduled grouped

$/0 organization) is presented in table 4.5.1-I. The minimum deadline

margin is a strong indicator of how close the application timing demands

are to being violated. (The minimum value in the table is the smallest

value observed during the experiment runs.) The 50 Hz rate group misses

computing deadlines with five of the ten possible phasings (phase i, 2, 3,

7, and 8), which is unacceptable. Examination of the data reveals that the

deadline margin distribution is very close to zero for the five

unacceptable phasings. Furthermore, the data indicated that these cases

correlated with frames having somewhat larger than average 50 Hz computing

demands. (Recall that application computing demands vary from frame to

172

Table 4.5.1-1. Experiment 4 Configuration 6 Summary - Flight Control Group

100 Hz
minumum

deadline

margin(ms)

50 Hz

minimum

deadline

margin(ms)

25 Hz

minimum

deadline

margin(ms)

CP

utilization

Missed 7
deadlines

lOP

utilization
I/0 system
utilizationPhase/ID

o 2.934 7.007 15.538 86% 72% 80% 28%

1 2.704 10.188 72% 93% 28%

10.188
1

10.188

Missed 7
deadlines

I/O network
utilization

ii

Missed 7
deadlines

2.704

86%

86% 72% 88% 28%
i

86% 72% 83% 28%3 2.704

4 3.370 0.319 10.320 86% 75% 78% 28%

ll|l

5 0.508 1.287 10.267 86% 84% 28%

7.848

Missed 7
deadlines

0.653

9

9.896

10.188

10.188

11.529

0.551

0.651

86%

86%

86%

86%1.905

75%

i

75%

75%

72%

73%

Missed 7
deadlines

79%

92%

91%

87%0.625

28%

28%

28%

28%

173

frame as the loop duration times are modeled with a normal distribution.)

In the other frames, the 50 Hz rate deadline is being met with a very small

margin, illustrating how sensitive the specific bad relative phasing

situations are.

Of the remaining cases, phase 4 has the largest deadline margin for the

100 Hz rate. However, the 50 Hz rate is very close to missing a deadline.

While this configuration may meet the minimum acceptable requirements, the

other configurations indicate that the overall performance can be improved.

A desirable goal is to improve the minimum deadline margin for the 50 Hz

rate without a significant reduction in the 100 Hz minimum deadline margin.

The best improvement for the least reduction seems to occur with phase 0.

The reduction in minimum deadline margin for the 100 Bz rate is less than

0.5 milliseconds. Additionally, the 50 Hz rate's minimum deadline margin

has increased nearly 7 milliseconds and the 25 Hz rate has increased nearly

5 milliseconds.

The time delay and I/0 Jitter data for the phase 0 case are illustrated in

figure 4.5.1-1. Two spikes, separated by 20 microseconds, are observed in

the i00 Hz jitter. The two peaks are a result of the completion of the

processing related to the unloading of the network interfaces for the 50 Hz

rate in minor frames 1 and 3. This unloading completes nearly at the

beginning of minor frames 2 and 4, causing a double context switch at the

beginning of these frames that slightly delays the execution of the 100 Hz

activity every other frame. However, the resulting 100 Hz rate Jitter is a

fraction of the update period. There is no variation in the start of the

I/O activity from frame to frame for either the 50 Hz or 25 Hz rate groups.

The effect of the jitter at the start of the i00 Hz I/O activity is

observable in the time delay statistics. It should be pointed out that the

DIU response time is modeled as a statistical process that results in some

variation in the I/O completion time and therefore contributes to the time

delay statistics. The first contribution to the I00 Hz time delay is the

variation for the start time of the 100 Hz I/O. The two distinct peaks are

a result of the two distinct starting times for the 100 Hz IlO. The I/O

activity for the 100 Hz rate is composed of eight transactions. Each

174

2OO

r
¢,-

100
ii

20--2

jitter

Minimumvalue (ms)Jo.e20 I
Maximum value Ims)[0.842]
Meanvalue '" (msll o.e31I
Standard deviation (_! I 0.015]

2o_

00000000

....
100 Hz

f-

_50
O"

u.

Time delay

']

i

43

I !

• 121 'i

I Minimum value (ms)[11.732 I

Maximum value (ms)I il.e12 I
Mean value (ms) I i'1.774_
Standard deviation (ms)] 0.022J

6._1
I
I

I

2_

i i

lOOHz

Time (ms)

200

C

[_00
L_

I
I

Minimum value (ms) l 5.946 [
'Maximum value (m;)l 5.947 I
Mean value (ms) 1 5.946]
Standard deviation(ms) 1 0.000 I

r-,_ T_me (ms)
o_

50 Hz

e-

5o
O"

I Mi_mumva_ue (m,) I _._50]
Maximum value (ms)121.8981
Mean value (ms)121.876I
S_ndard daviat]on (ms)! 0.010 I

48

38 3_.._25

i ! i : : i i :

5O Hz

Time (ms)

20O

lOO
u_

Minimum value
Ma_v_ (ms) I 5.524[
.Mean value (rns) I 5.524 I
Standard deviation (ms)J 0,.000 J

I Minimum value (ms)J 40.266 J
Maximum value (ms) 140.285 J
Mean value (ms) _40.275 J
Standard deviation (msI _ 0.0041

Time (ms)

Figure 4.5.1-1. Experiment 4 Configuration 6 Phase 0 Application Performance Parameters

175

transaction is modeled as a statistical process with uniform distribution

ranging in value between 0 and 10 microseconds. The overall contribution

of these eight sources in the model contributes to the bell-shaped

distribution about the two peaks in the figure. The time delay for the

50 Hz and 25 Hz rates exhibits no unexpected behavior.

The application sequencing for one major frame of the preferred

configuration (phase 0) is illustrated in figure 4.5.1-2. This figure

illustrates how the application activity aligns with the FDIR to provide a

configuration that has better performance than the others evaluated in this

experiment. In phase 0, the FDIR is scheduled to execute 1 millisecond

into the minor frame. This allows a small degree of parallel activity in

our model because the 100 Bz I/O activity can be executing using the IOSs

and DIUs while the FDIR is executing on the lOP.

Engine Control Croup

The workload on the engine control group Is substantially less demanding

than that on the flight control functions. Consequently, the engine

control computer Is able to meet the deadlines of the engine control

functions in all the I/O scheduling and I/O grouping alternatives. Details

for each configuration will be presented in the following paragraphs.

Configuration 14 (On Demand Grouped I/0 Organization). The deadline

margins and utilization values for configuration 14 are illustrated in

table 4.5.1-2. The minimum deadline margin data from this experiment

indicates that all the phasing options have adequate reserve margins.

These values are significantly better than those of the flight control

group, reflecting the difference in the workload demands.

No configuration has clearly superior performance characteristics.

Therefore, the phase 4 case is selected as the preferred configuration

based on the largest minimum deadline margin for all the application rates.

The I/O jitter and time delay characteristics for this configuration are

illustrated in figure 4.5.1-3. The 100 Hz rate exhibits what appear to be

uniformly varying start times over an approximate range of 15 microseconds.

176

_ Major frame ._

o, II_I1 J_,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I
0 ms I 0 ms 20 ms 30 ma 40 ms

I1
,rl,,,,n,,,JJ,,,,,n,,,R, ,,n,====,,,Network 'I l' ' I''' , , I , I, I,, , I' ' ' ' ' I I

Legend:

FDIR 100Hz 50Hz 25Hz

Figure 4.5,1-2. Experiment 4 Flight Control Computer Preferred Configuration

177

Table 4.5.1-2. Experiment 4 Configuration 14 Summary

100 Hz

minimum

deadline

margin(ms)

50 Hz

minimum

deadline

margin(ms)

25 Hz

minimum

deadline

margin(ms)Phase/IO

0 5.657 13,598 31.941 51%
i

2

4

6.440

6.440

6.440

7.140

7.140

7.140

7.140

4.540

4.840

6

14.898

14.898

14.898

15.560

15.560

12.998

13.298

i

14.041

12.598

7

33.241

33.241

33.241

33.241

i

31.341

31.341

31.641

32.364

30.941

CP

utilization

48%

48%

48%

51%

51%

51%

51%

51%

51%

lOP

utilization

53%
=

58%

58%

58%

58%

58%

58%

56%

56%

55%

I/0 system
utilization

57=/o
i i

46%
i

46%

46%

i

39%

39%

39%

56%

5O%

67%

I/O network

utilization

7%

7=/0

7%

7%

7%

7=/0

7%

7%

7%

7%

178

2OO

|
II

100

VO jitter

I Minimum value (ms) 1 0.879 I
Maximum value (rns)J 0.800 I

I IVlean value tmsll 0.886 IStandarddaviation(ms)I O.OO4I

51 50 55

i i i i . . i /

100 Hz

Time (ms)

Tome delay

61
J

I

i41

I I] I ; I I I I

ooooooooooo__ --

100 Hz

Minimumvalue (m,)l +o.asl|
Maximum value (ms)110.385/

_93 Mean value (ms) ! 10369|

standarddaviation(ms)l 0.0os/

67

Time (ms)

|
U.

100-

s

I

I

'Minimum value (msll2.95eI
mum value (m+)l 2.957 [

an value (ms) I 2.957 I
deviation (ms) I 0.000 I

50 Hz

U.

Minimum value (m,)120.295I
Maximum value (ms) [20.305 I
Meanvalue (ms)l 20.300I
Slandard deviation (ms) J 0.0021

34

Time (ms) _me (ms)

50 Hz

200 " I Minimum value
v (ms)I 2.957 I

Me=nvalue (ms)I 2.957 I
Standard deviation (ms)l 0.000 J

U.

5O

Minimum value (ms)I4o.74sI
Maximum value (ms) [40.724 [
Mean value (ms) 1 40.720 I
Standard deviation (ms) I 0.0031

101

r..[Time(ms) -_, ,'T-'!, _me (ms,

Od • • ' •

25Hz _ _ o_ _o _ _

25 Hz

Figure 4.5.1-3. Experiment 4 Configuration 14 Phase 4 Application Performance Parameters

179

This is characteristic of the uniformly distributed models for the response

to an interprocessor event used in the on demand I/O option. This

characteristic is not visible in either the 50 Hz or 25 Hz I/O because the

100 Hz I/O is executing when these requests are made. The time delay data

for the preferred configuration are acceptable.

A timeline of one major frame for the phase 4 case is illustrated in figure

4.5.1-4. Note that the 50 Hz or 25 Hz IlO activity is loaded during the

I0P Idle time before unloading the 100 Hz data during the appropriate minor

frames. This "preloading" does not occur in the preferred flight control

configuration because the FDIR executes during the 100 Hz IOS execution.

The phase 4 case could have problems when future growth is considered. In

this situation, the FDIR executes at the end of every minor frame, after

the completion of all application activity. The simple minimum deadline

margin figure of merit of 7.140 milliseconds may be misleading in this

situation. Because the FDIR executes after the application activity, the

application cannot expand to fill the 7.140 milliseconds without being

preempted by the FDIR. A more sophisticated measure of deadline margin

might be necessary to allow better comparison in such situations.

Configuration 15 (On Demand Separated I/O Organization). The deadline

margins and utilization values for configuration 15 are shown in table

4.5.1-3. No data are available for phases 1, 2, 3, 7, and 8 because a

simulation error prevented correct modeling of the overrun policy. The

minimum deadline margins for this configuration are smaller than those from

configuration 14.

The phase 6 case is selected as the preferred configuration based on the

criterion that it maximizes the minimum deadline margin for all application

rates. The jitter characteristics for the input and output I/O activity

and the time delay data are shown in figure 4.5.1-5.

The output jitter histogram for the 100 Hz rate shows two peaks separated

by approximately 3 milliseconds. Unlike previous situations, the variation

is a significant portion of the minor frame period. A closer look at each

180

CP I

0 ms I0 mm 20 ms 30 ms 40 m=

=ql,n, nH,n,
lOP i w , , , , , _ I ' f ' f '

,!n,n==n,,,_, n=n=,,,,=_i=:,r-_,I ,,,,,

,,,,,,,,,,I = ,,,,,,,,,,,,,,,,,,,,,,,,,I
Ll_end,

=sDN
FDIR 100 Hz 50Hz 25Hz

Figure 4.5.1-4. Expenment 4 Engine Control Computer Phase 4 Configuration 14

181

Phase/ID

100 Hz

minimum
deadline

margin(ms)
| =1

Table 4.5.1-3.

50 Hz

minimum

deadline

margin(ms)
i

9.996

Experiment 4 Configuration 15 Summary

25 Hz

minimum

deadline

margin(ms}
i

19.867

CP

utilization
i

51%

lOP

utilization

84%

I/O system
utilization

96%

No data available

i

93%

I/O network

utilization
I i

7%

4 5.146 9.889 29.037 50% 87%o _o

i

5 6.144 11.647 28.612 51°/o 860/0 94% 7%

6 6.1 44 11.998 51% 95% 7%

7

i

8

29.337

i

86%

i

No data available

9 4.743 12.300 30.680 51% 87% 97% I 7%

182

L

|
U.

U.

U.

IO0

Input VO activity jitter

I Minimum value (msll' 0.765 I
Maximum value (ms)[1.379 I
Mean value (ms)[1.072 I
Standard deviation (ms)[., 0.300 [

200 -

100-

200

;

I

I

100-

• 202 202

I 00000000

100Hz

"Rme (ms)

Minimum value (ms)l 2.956 I
Maximum value (ms) I 3.137 I

Mean value (ms) ! 3.031 J
Standard davi,alion (ms I l 0.082 I

110

I

64

0 0 O0 00_--

i i i i , !

_ _. ,Qo. o. . .,-----
e_ _ e_m m m m m _i_i

5O Hz

_me (ms)

101

Minimum value (msll3.956I
Maximum value (ms)J 3.957 J

Mean value (ms) I 3.957
Standard deviation (ms) I 0,000 I

l_me(ms)

3OO

_' 2OO

U.

IO0

2O0

=g loo
U.

100-

_" 50-
U.

Output (/0 jitter

Minimum value
._ v,_,e (ms) 1 7.731 I

Mean value (ms)I 6.796 [
Standard deviation Imsl [1.454 [

294

110

-II

i 0 0 0 0 0 O0 0

100Hz

"l_me (ms)

Minimum value (ms)
Maximum value (ms) I 9.917 I
Mean .value (ms)] 9.422 I
Standard deviation (ms)] 0.437)

110

92

O0 O0 0 00_

o_ o_ o_o_ o_ o_ o_ o_ o_ o_

5O Hz

101

_m
_O4

Minimum value <ms) J 23.956 I

Maximum value (ms) J 23.9571
Mean value (ms) J 23.957 J
Standard deviation Imsl J 0.000

25 Hz

, ,_me (ms)

Time(ms)

Figure 4.5. 1-5 Experiment 4 Configuration 15 Phase 6 Application
Performance Parameters (Sheet 1 of 2)

183

Time delay

200 -

2O2

I 100

U.

20O

o o,o,o,o,o,o

100 Hz

100
i

LI

100-

11o

JI
0000000

i | i i i ! i

5O Hz
101

i

¢-

ii

_r,r,imum_ue (m,ll s.7_!
M_m,m v_ue (m,)l e.932I
Meanv_ue (ms)l S.e22I
Smndamdevmeon(m,)l 1.2e3]

Time (ms)

Mirdmumwlue _m,)l e.l,m I
Maximum wlue (ms) l s.9o2 I
Mean value (ms) ! 6.488 J
Standard deviation (ms) [0.3551

Time (ms)

Minimum vmtue (ml) l 20.14,5 I

Maximum value (ml)l 20.146 I
Meanvalue (ms)l2o.1461
Standard deviation (ms) J 0.000]

....... Tm_e (ms)

25 Hz

F_jure 4.5.1-5. Experiment 4 Configuration 15 Phase 6 Application
Performance Parameters (Sheet 2 of 2)

peak of the i00 Hz output jitter is shown in figure 4.5.1-6. The first

peak reduces to what appears to be a uniform distribution with a range of

16 microseconds. This shape and range are attributed to the system being

idle when this IlO request is made. This situation happens most often in

minor frame 4, when only the 100 Hz process executes. A more detailed

investigation of the second group shows that it is composed of two separate

distributions. One distribution is clustered at 7.600 milliseconds and the

other appears to be uniformly distributed between 7.715 milliseconds and

7.731 milliseconds. The first cluster is associated with IlO requests that

have been preloaded, while the second distribution is associated with I/O

requests that are serviced by an idle I/O system. A tlmeline of the

selected configuration is shown in figure 4.5.1-7.

Configuration 16 (Scheduled Grouped I/O Organization). The deadline

margins and utilization values for configuration 16 are shown in table

4.5.1-4. These values do not differ significantly from the on demand-

grouped IIO configuration. One minor difference is in the minimum deadline

margins for phasing cases 1, 2, and 3. These values are i millisecond or

more larger than the on demand grouped If0 configuration. Thls is because

the start of frame occurs In the IOP instead of the CP. Thls eliminates

the extra overhead step of waking up the CP just to start the IlO activity

in the IOP. The earlier start of the I/O activity causes the I/O

completion poll to be scheduled 1 millisecond earlier in the frame.

The phase 3 case is selected as the preferred configuration because it has

the lowest IO service utilization. The IlO jitter and the tlme delay

characteristics for the phase 3 case are illustrated in figure 4.5.1-8.

The IlO jitter and the time delay histograms reveal nothing unexpected.

The timeline for one major frame of the preferred configuration is

illustrated in figure 4.5.1-9.

Experiment 4 shows that the phasing of the FDIR and the application is

critical, especially in heavily loaded cases. An implementation technique

will be needed to control the relative execution phasing of the FDIR

process and the application. Additionally, the simulation showed that the

185

4O

2O

f 14 16

! i i v v v m |

'_. . _. _._. _.,_ _. _.

100 Hz output JlUer I Minimum wlue Ires11 4.416 J
Maxlmum value (ms)l 7.731]
Meanvalue (m=)l8.796 1
Standard cleviatJon (ms} 1 1.454 I

100 Hz

2OO

100

100

000000 O0

• _ _

100 Hz 100 Hz

92

: 1

100 Hz

14

u

100 Hz

Figure 4.5.1-6. Detailed View of 100 Hz Output Jitter

186

CP !],,,, Id,,, Jll, ! p
0 ms 10 ms 20 ms 30 ms 40 ms

Netwod_ ' ' ' ' ' ' ' ' I ' ' ' ' ' ' ' ' ' I ' ' ' ' ' ' _ ' ' I * ' ' ' ' ' _ ' ' I

Legend:

FDIR 100Hz 50Hz 25Hz

Figure 4.5.1-7. Experiment 4 Configuration 15 Phase 6 Case

187

Phase/ID

| i

o

3

4

5

6

7

8

9

Table 4.5.1-4. Experiment 4 Configuration 16 Summary

l OOHz
minumum
deadline

margin(ms)
I

5.841
i

7.440
I

7.441

7.141

7.140

7.140

7.140

t

7.140

i

4.540

i J

4.840

50Hz
minimum
deadline

margin(ms)

13.815
i

15.115

16.115

16.115
I

15.815

15.815

ii

13.215

13.515

14.258

12.815

25 Hz
minimum
deadline

margin(ms)
I

32.192

34.492

34.492

34.492
i

34.192

31.592

31.592

31.892

i

32.635

31.192

CP
utilization

I i

42%

42%

42%

42%

42%

42%

42%

42%

i

42%

42%

lOP
utilization

I

53%

55%

55%

55%

58%

58%

I

58%

H

56%

h

56%

55%

I/0 system
utilization

6o%

62%
i

52%
i

42%

42%

42%

42%

59%

54%

70%

I/(3 network
utilization

i

7%
ii

7%

7%

7%

7%

i

7%

7%

7%

7%

188

3OO

2OO

IO0
8a

uOjmer
32O

1_ni._m v=. Im'_lo._ I
I Meximum_ (ms)I o.e_ I

J I Me_v_ue (m.)lo.s3SI

I S=nc_rd_on I O.OooI

I

i

I
i

! !

0 0

100 Hz

5O

Time delay

I Minimum value Imsl110.3esI
Maximumvalue(ms)110.3751
Mean value (ms)110.370

standarddevotion [O.OOOi

s_24.=49
-- _ 42

I
• | v

o_o ooo o
100 Hz

2OO

100 I

I Minimum value (m)l _-gso I

Maximum value (ms) I 2.957 I
Mean value (ms) I 2.957 I

Stlmdsrddeviation I 0.000 I

O4

5O Hz

5(

I Minimum value (ms) J 20.296 I

Maximum wCue (ms)I :'0.30sI
Mean value (ms)l 20.301 I

Standard deviation I O.OO21

3:

_Jgl

_. .. :

50 Hz

200

IO0
101

Minimum value (mstl 2.956 I
Maximum value (ms)l 2.957 I

Mean value (ms) I 2.957 I
Standard deviation I O.OOO I

50

I Minimum value (mst]40.715 I

Maximum value (ms) 140.724 I
Mean value (ms) 140.719 I
Standard deviation l O0.OO21

p,,,

Ot

25 Hz
25 Hz

Figure 4.5.1-8. Experiment 4 Configuration 16 Phase 3 Application Performance Parameters

189

0 ms 10 ms 20 ms 30 ms 40 ms

,o,,,n,,n,,, ,,-lull,n,,H,,, ,n,,,,,

n, n,H,,,,,,,n,H,,,,,,,n,,,,,,,
Network I , , , , , , , , , i , , , , , , , , , i i , , , , , , , , i , , , , , , , , : I

Legend:

FDIR 100Hz 50 Hz 25Hz

Figure 4.5.1-9. Experiment 4 Configuration 16 Phase 3 Case

190

system loading vas more severe than indicated by the manual estlmates,

vhich could not cover resource contention and neglected task sequencing and

control overhead.

4.5.2 Utilization (Experlnmnt 5)

The utilization of four key resources vas measured during the experiment

4 runs. The resources vere the CP, IOP, I/O system, and the I/O netvork.

In this ray the objectives of experiment 5 vere met vithout making any

dedicated experiment runs. Before discussing the results, some

peculiarities of the I/0 system and the I/0 network utilization parameters

are described in greater detail.

The I/0 system utilization is a measure of the availability of the I/0

system to accommodate additional I/0 demands. The I/O system values can

vary somewhat according to how utilization is accounted for. Some FOIR

application phasings result in scheduling an I/0 completion poll (see

section 4.4.2) at the same time the FDIR is scheduled to execute. Vhen

this happens the FDIR executes in the lOP, because it has higher priority.

The I/0 completion poll processing is delayed until the completion of the

FDIR, vhich results in busy time counted against the I/0 system even though

no I/0 activity is being accomplished. With slightly different phasing

alignments this I/O completion delay does not occur and is not counted as

utilization.

The I/O netvork utilization measures the time that the netvork is dedicated

to performing application I/0. This includes the time from the beginning

of the transmission of the first transaction in the I/0 activity until the

I0S has completed processing the last transaction in the activity. The

IAPSA study results revealed that a small utilization value for the I/0

netvork is not necessarily a good indicator of spare I/0 capacity. This is

because the I/O netvork use is only a small portion of the end-to-end time

requirement for performing an I/0 request. The I/O system utilization

value appears to be a better indicator of the effect of the application

vorkload on the I/0 resources for this implementation.

191

Flight Control Group

The utilization of the system elements for configuration 6 is shorn in

table 4.5.1-1. The values are generally high, vith the exception of the

I/0 netvork. The utilization of the CP is 86_. The utilization of the lOP

is betveen 72Z and 75_. The utilization measures for the preferred

candidate (phase O) do not meet the 100_ grovth capability requirement.

Engine Control Croup

Configuration 14 (On I)emand Grouped I/0 Organisation). The utilization

figures are shorn in table 4.5.1-2. Three phasing cases result in the

lovest CP utilization (phase 1, 2, and 3). This is because these phastngs

have one less process svttch per minor frame than all the other phasings.

The IOP utilization ranges from 53g to 38Z. As the scheduled time for FDIR

moves through the minor frame, different sequences of processing occur.

The vide range in I/0 system utilization is attributed to the accounting

method characteristics described previously. That is, if the FDIR

interferes vith the processing for I/O activity, the FDIR processing time

is counted against the I/O system. The I/O netvork utilization is well

vithtn the system capacity limits.

Configuration 15 (On Deland Separated I/O Organization). The data for this

configuration are presented in table 4.5.1-3. The utilization of the CP ts

essentially unchanged from other configurations. Hoverer, the 1UP

utilization has jumped significantly. The cause is the separation of the

I/O activity into tvo activities per rate group per control cycle, b-hen

the I/O is divided into tvo activities per rate group, the overhead

associated vith I/O request execution doubles. This has an adverse effect

on I/0 system utilization resulting in essentially no reserve capacity

remaining in this configuration.

Configuration 16 (Scheduled Grouped I/O Organization). The utilization

values for configuration 16 are shorn in table 4.5.1-4. Because the start

of frame event occurs in the IOP, the CP utilization values are smallor

than in the on demand grouped I/0 configuration (configuration 14).

192

4.5.3 I/O Se..hedultng (Experiment 3)

The purpose of thls experiment is to evaluate the effect of the I/O

scheduling mechanism on the performance of the application during normal

operation. In addition a single representative configuration rill be

selected for the engine and flight control groups to serve as a baseline

for the I/O link fault experiments. No special runs were made to obtain

data for this experiment, all needed information was gathered during

experiment 4 runs.

Flight Control Group

As discussed in section 4.5.1, only the scheduled grouped I/O organization

option (configuration 6) could support the workload of the flight control

group. The resulting performance for the preferred phasing option is

summarized in table 4.5.3-1.

Engine Control Group

The performance of the preferred configurations for the engine control

group from experiment 4 are summarized in table 4.5.3-1. All engine

control configurations appear to have adequate deadline margin. The CP

utilization is satisfactory in all configurations. The IOP utilization is

satisfactory except for the on demand separated I/O option (configuration

15). For experiment 2, a representative single configuration is chosen for

the engine control group. The on demand grouped I/0 option (configuration

G4) is selected as the I/O scheduling mechanism for the engine control

computer.

4.5.4 I/O Link Failure (Experiment 2)

The purpose of experiment 2 is to measure the time needed to successfully

return a faulty network to service. In addition, the experiment evaluates

the effect of the repair processing on application performance. The

out-of-service time measures the time between a network being taken

out-of-service for repair and the time the network manager returns a

193

Table 4.5.3-1. Summary I/0 Scheduling

Engine Control Computer

On demand/grouped
On demand/separated
Scheduled/g rouped

100 Hz
Minimum
Deadline

MaJgin(ms)

7.140
6.140
7.440

50 Hz
Minimum
Deadline

Margin (ms)

15.598
11.998
16.115

25 Hz
Minimum
Deadline

Margin (ms)

33.941
29.337
34.492

CP
Utilization

51%
51%
42%

lOP
Utilization

58%
86%
55%

VO
System
Utilization

39%
95%
42%

Flight Control Computer

Scheduled/grouped

100 Hz
Minimum
Deadline
Margin (ms)

2.934

50 Hz
Minimum
Deadline

Margin (ms)

7.007

25 Hz
Minimum
Deadline
Margin (ms)

15.538

CP
Utilization

86%

lOP
Utilization

72%

I/O
System
Utilization

80%

194

network to service, b key concern in this experiment is the change in the

application timing characteristics due to the I/O network repair activity.

Second, the out-of-service time must be compared to the 1 second fault

recovery period used in the initial reliability analysis. Experiment 2

faults were inserted at a random tlme relative to the major frame for each

rtm. For each link the experiment was repeated 50 times.

One-Shot Repair Strategy Experiments

Flight Control Group (Configuration 11). The I/0 network out-of-service

time distributions for this experiment are summarized in figure 4.5.4-1.

Two factors drive the resulting distribution. First, the detection of a

fault is dependent on the topology of the network. Second, the detection

of the fault by the application I/O activity is dependent on the time of

application I/O execution. The network topology aspect is illustrated in

figure 4.5.4-2. Network 2 is shown as it is grown at power-up with no

faults. The stars contained in each node indicate the application I/O

activity rate groups that are dependent on the inboard link on that node.

Note that several of the link failures can be detected by communication

faults appearing in more than one application I/O activity. This is

because either the attached DIU or the downstream DIUs are accessed by more

than one application rate group's I/O activity. One example is DIU CP3,

which is accessed by both the 50 Hz rate and the 25 Hz rate I/O activity.

Another example is DIU RR, which is accessed by the 50 Hz rate, while its

downstream node, TER, is accessed by the 100 Hz I/O activity. Therefore,

when the link that connects RR to FC4 fails, either the 100 Hz I/O or the

50 Hz I/O activity will result in communication failures.

There are seven application I/O completion polls per major frame for the

grouped I/O organization configurations. Therefore there are seven

discrete times in a major frame that a fault can be detected. A particular

fault may only be discovered by the 50 Hz I/O activity and thus have only

two opportunities for detection per major frame. A fault that is detected

by both the 100 Hz and the 50 Hz I/O activities has six detection

opportunities per major frame.

195

L Mlnimumvalue (mill 15.336 I

Meximumvalue(ms)120.659]
Mean_ue Im)i 17.1ooI
Standarddevia_on [2.14S]

Out of service time

Minimumvalue era,)!32562 I
Max_umvalue(m,)l 37.5631
Meanvalue (ms)l 3S.034I
Standardd_a_on I 1.71sl

i50

LL

f ! 10 11o

k_k 28-70

Time (ms)

_50
LL

t _, 11 7 1

link 70-71

Time (ms)

50

LL.

Minimum value (ms) 132.562 I
Maximum value (ms) 137.563 I

Meanv=ue (ms)13S'204I
S=ndarddecagon J 1.656J

50

M.

Minimum value (ms)J31.e25J

Mm.um v_ (ms)l_'.s_ I
Moan_ (ms)l_.gel I
s=_,_ _on I l s2oI

15

'i
#_'_ 0 0 Time (ms) r-) O 0• i • i i i i i | !

Link 70-79 Link 70-87

Time (ms)

Min_um val,ue Ims){ 37.562 l
Maximum value (rns)J 37,563_
Meanva_ue (ms) 1 37.562J
Standard deviation I O.O00J

U.

I Minimum value (mslle2.562I
Maximum value (ms_1 37.563 I
Mean value (ms) 135.174 I
Standard deviation J 1.7051

Link 71-72 Link 71-75

Figure 4.5.4-1. Out of Service Time For One Shot Repair - Flight Control Computer (Sheet 1 of 3)

Time (ms)

196

Minimum value (ms)[37.562 I
M_._ ve_ (msl1371563l
Meanvalue Ims)137.562I
'Standarddavie_n I 0.0001

Out of service _me

I .nimumv-ueIm,fl37.562]
Maximum value (ms)! 37.563 I
Mean value (ms)] 37.562]
s=__on l °°°°I

_5o

U.

5O

P,.

Link 72-73

T_ne (ms)

U.

I Minimum value Im,)132.562 I

Maximumvalue (msl135.825I
Mean value {ms) 134.160 I
Standard deviation I 1.221] i_'

o o,, , , (°.)

5O

0")

Unk 75-74

Time(ms)

Minimum value (m=)132.562 [
Maximum value (msI]35,825]
Mean value (ms)134,140 I
Standard deviation I 1.218 1

14 13 12I:oAono
i i i , i i

o. . , _. . , _.

Unk 75-76 Link 78-77

"nine(ms)

_rso
LI.

I Minimum value (m,)132,562I
Maximum value (;11s)137.563 I
Meanvalue Ims)134"9°31
Standard dav_a_on I 1.629 1

U.

50

Minimum value

Maximum value (ms) 1 37.563 I
'Mean value (m$)l 35.474 I
Standard deviation I 1.6581

I I I0 0 _me(ms) 0 Time (ms)
l , • i i , i , , i , i i i i

........ _==_
Link 79-78 Link 79-80

F_gure 4.5.4- I. Out of Service Time For One Shot Repak - Flight Control Computer (Sheet 2 of 3)

197

Minimum value (ms1132.562 I
IVlaximum value (m$)[35.825
Mun v/ue Ims)134.140I
StandarddevialJon I 1.218J

Out of service time

Minimum value (ms) l 37.562 I
Meximumvalue(m) l 37.563I
Mean_ (m')l_.5621
'S_L_rddav._ I 0.0001

i , , •

Link 80-81

_me (ms)

Minimum value (ms) l 32.562 J
Maximum value (ms) 1 35.825 J
Mean value (ms)134.160I

I Standard deviation J 1.221 J5O

U.

n"
,. ;0 0 0 Tmle (ms)

0 "_ O) "q' ¢0 0') ¢0

Unk 8382

LL

_- so
U.

50

P_

m

P_

Time (ms)

Unk 8O-84

Minimum value <m,)]37.s52I
Maximum value (ms)137.563]
Mean value (ms)] 37.562 I
Standardd_,_eon I 0,0001

Time (ms)

Unk 8685

U.

Minimumvalue (ms)132.ss2I
Maximum value (ms) 135.825 I
Mean value (ms) 134.338 I
Standard deviation J 1.114 I

5c
LL

Min_um value (m,)131825I
Maximumvalue (ms)137.563I
Mean value (ms)136.071J
Standard deviation I 2.5421

37

lO ;1,o 'i
J_J0H0 ON T_me(ms) I 0 o,Q 9 _)
i ! _ i i i i i , i i i

Link 87-83 Unk 87-86

"l_me (ms)

Figure 4.5.4-1. Out of Service Time For One Shot Repair- Flight Control Computer (Sheet 3 of 3)

198

Key

,_ 100Hz
_k 50 Hz
-_ 25 Hz

Figure 4.5.4-2. Network 2 With No Faults

199

Network repair activity consists of a sequence of processing and I/O

request steps to repair a passive IlO link failure. The network manager is

responsible for implementing the repair strategy. It executes in Idle time

on the lOP since its priority is less than the application IlO activity.

The application activity in the IOP is relatively constant; the idle time

slots therefore align themselves to positions in the major frame. The

repair steps are accomplished during these idle periods. The I/O

completion poll activity that detects the communication fault determines

the initial phasing of the I/O repair activity relative to the major frame.

The initial phasing, coupled with the sequence of idle time slots available

in the IOP control, governs the out-of-servlce time.

The number of distinct out-of-service times depends primarily on the unique

combinations of initial phasings and sequences of lOP idle time.

Variability of lOP processing can also have an effect. A link failure

between node 75 and 76 is only detected by the 100 Hz I/O activity. There

are four unique repair times corresponding to faults detected by 100 Bz I/O

activity. However, there is only one unique time, longer than any of the

100 Hz repair times for link failures detected by the 50 Hz rate. This is

seen in the histogram for link failures between node 71 and node 72 on

sheet 1 of figure 4.5.4-i. There is also a unique repair time, shorter

than any other, for failures detected by the 25 Hz activity.

The llnk failures that are detected by more than one I/O activity result in

out-of-service times that are a combination of the results for the

individual rates. This is observed in the data for link failures between

nodes 71 and 75, which are detected by the 100 Hz and 50 Hz application I/O

activity, and failures between nodes 87 and 86, which are detected by the

50 _z and 25 Hz I/O activity. This discussion illustrates that the results

of the random testing can often be related to the details of system

operation.

A summary of the application performance measures for each link failure

sequence is illustrated in table 4.5.4-i. The CP utilization is not

included in the summary because it is not affected by the network repair

activity. In addition, the I/0 network utilization is not included because

200

Failed

link

28-70

70-71

70-79

Table 4.5.4-1. Experiment 2 Configuration 11 Summary

71-72

71-75

79-78

79-80

87-83

87-86

72 -73

75-74

75-76

78-77

80-81

80-84

83-82

86-85

100 Hz

minimum

deadline

margin(ms)

2.927

2.959

50 Hz

minimum

deadline

margin (ms)

2.549

2.523

25 Hz

minimum

deadline

margin(ms)

11.355

11.561

lOP
utilization

78%

78%

I0

system
utilization

68'/,,

68%

68%2.897 2.618 11.189 78%

70-87 2.835 2.531 11.387 78% 68%

3.003 2.286 11.153 78o/o 68%

2.914

2.945

2.851

2.972

2.531

2.559

2.488

2.607

2.558

2.570

2.577

2.410

2.471

2.471

2.485

2.410

2.649

2.930

2.689

2.884

11.267

11.134

11.146

11.418

11.167

10.946

10.946

11.164

11.309

11.309

10.946

11.164

10.946

2.950

2.948

2.948

78"/0

78%

78"/o

79%

78%

78%
i=

78%

78%

78%

79%

78%

79%

78%

2.967

2.950

2.925

68%

68%

68%

68%

68%

69%

69%

68%

68%

68%

68%

68%

68%

201

it Is not affected on the "good" network, while the repair activity has

exclusive use of the failed network. Some significant differences are

observed when comparing table 4.5.4-1 to the normal flight control group

results in table 4.5.3-1. First, the minimum deadline margin of the 50 Hz

rate has been reduced from more than 7 milliseconds to approximately

2.5 mllllseconds. Second, the utilization of the IOP has increased

slightly while the 1/O service utilization has been reduced from 80 percent

to 68 percent.

Figure 4.5.4-3 is a timeline of processes for the CP, IOP, and I/O networks

as they occurred in the 33 repetitions of the experiment simulating a link

failure between nodes 72 and 73. The second major frame shown in the top

part of the figure illustrates the alignment of processes durlng normal

operation. At 67.1 milliseconds the link between nodes 72 and 73 is

failed. This link is used exclusively by the 50 Hz IlO activity. The

failure occurs during the second 50 Hz IlO activity in this major frame but

after the transaction that uses the failed link, so the failure is not

[discovered until the next 50 Bz I/O activity.

The IIO llnk failure is detected in the third major frame illustrated in

the bottom part of the figure. Network 2 is taken out of service when the

50 Bz IIO completion poll processing discovers the communication faults.

The effects of this action are immediately observed in the second minor

frame. The load time for the I/O activity is reduced by 50 percent because

network 2 is out of service. When a network is taken out of service, the

reduction in pre- and post-processing needs in the IOP results in a new

alignment application I/O processing.

As a result of network 2 being taken out of service, the 25 Hz I/O activity

starts on the network earlier. This earlier start has two causes. First,

loading activity for the 25 Bz data rate fits into the new idle time slot

just before the FDIR processing (preloading). Second, the 100 Hz I/O

activity unloading time is reduced.

At approximately 95 milliseconds, the first IOP idle slot occurs and the

repair activity for network 2 starts. The first step in this process is to

202

Major frame #2

,,o_ ,_,,F3,: ,,,,,,, II I I I I I I I

40 ms 50 ms 60 ms 70 ms 80 ms

ln, nn, ,H,,t , nH,
I''''''''' I''''''''' I''''''''' I''''''''' I

..-, n,,,Yl,,,n,, ,H,,,,,n,,,X,, n,,,,,, ,,
#11'''''''''1'''''''''1'''''''''1'''''''''1

I _ Link fault.._o_,r-I,,, _,,, _,,,,,,,, n,,,, ,,,,,_,,,,,,,,
#21,,,0,,,,,I,,,,,,,,,I,,,,,,,,,I,,,,,,,,,I

Major frame #3

n,
I I I I I I I I I I I I I ! I I I I -1 I I I I I I I I I I I I I I I I | I I I I

80 ms 90 ms I00 ms 110 ms 120 ms

,o, ,!,,, ,,,,
I,,, , , , , , _I, ,, ,,,,,, I,,, , ,, , ,,I , ,,, ,, , ,, I

I_-_,, _-_,,, I[-_, , _ , _ , , I

Network
#2

Legend:

FDIR 100Hz 50Hz 25Hz Network

repair
activily

Figure 4.5.4-3. Experiment 2 Configuration 11, Link 72- 73, Run 33 (1 of 2)

203

Major Frame #4

120 me 130 ms 140 ms 150 me 160 ms

lOP
In, nl,,l,,tn, H],,13n,r-,n,,,,

, , , , , i , , , i ' ' ' ' ' ' ' , , i ' ' ' ' ' ' ' ' '

,,.,wo,,,,,,,,,,,,,n,,,1,,,,,n,,,f:-],,, =::,:
#21' ' '' '' ' ' ' I ''' '' ' ''' I'' ''' '''' I l

Legend: _-_

FDIR 100 Hz 50Hz 25 Hz Link
fault

Network
repair
activity

Figure 4.5.4-3. Experiment 2 Configuration 11, Link 72-73, Run 33 (2 of 2)

204

attempt communication with all the nodes in network 2, as seen by the long-

duration I/O activity on the network 2 line.

The reduced minimum deadline margin for the 50 Hz rate group is a result of

the new Idle time slot in the IOP after the completion of the I00 Hz I/0

loading. When this new Idle time slot occurs in the third minor frame, the

50 Hz data loading starts during the gap. The deadline for the 50 Hz rate

group is the start of I/0 data loading. One effect of taking the network

out of service is a forward shift of the 50 Hz computing deadline by

5 milliseconds.

The overall 50 Hz deadline margin effect is a reduction for the one

transition frame when the deadline moves earlier by 5 milliseconds. The

new minimum deadline margin is 2.5 milliseconds for the 50 Hz rate group.

However, because the computing completion immediately moves forward as the

activity in the CP adjusts itself to the new alignment of events in the

IOP, the deadline margin jumps to a larger value for the remainder of the

repair period. Thus the minimum value sample occurs in the transition

frame in all of the failure simulations.

The repair activity in the IOP and on the network continues throughout the

remainder of this major frame and completes in the first minor frame shown

in major frame 4. The last processing element of the repair activity

returns network 2 to service during the execution of the 50 Hz I/0. When

network 2 is returned to service, the processing elements in the I0P

realign to the positions they occupied before the fault. The return of

these processing elements to their former positions triggers a new CP

processing alignment which returns the processing elements to their

positions before the network failure.

Figure 4.5.4-4 illustrates the other two application performance measures

during I/O network repair. Data are presented for all 50 repetitions of

the experiment. The data for both measures include samples when both

networks are in service as well as when only one network is in service.

Some of the I/O jitter samples reflect the earlier start of activity when

only one network is in service. The time delay data include samples from

205

I/0 jitter

Mi._,,m_,e Ira,)10.5_2I
Maximum value (ms)l 0.842 I
Mean value (ms)l (_.723 J
Standard deviation I 0.123 J

Time delay

I Mi_m,mv_ue (m,)[11.531 l
Maximumvalue(ms)112.0431
Mea,_value (ms)111.-rz41
Stanchaddeviadon [o.1o91

. 300 280.

_ 200

100

0,0,0,0,0,0,0,0

oooooooo0oo

IO0 HZ

Time (ms)

30O
C

20o
U.

100

I

j8_Noo2 j ooon
i|1! ,! rll

100 Hz

Time (ms)

200

_g lOO
LL

Minimumvalue(m_)[4.7S0l
Maximum value (ms)J 5.947 J
Mean value (ms)J 5.452 }
Standard deviation I 0.585 I

140
"7

2OO

C

_g 100
LL

I Minimum value (m,)l 2o.eseI
Maximum value (m,)123.oz8I
Mean value (ms)121.876 I
Standard deviation [0.767J

100

! 50 50

0 0 0 0 0 0 0 I Time (ms) 0 0 0 0 0 0

,.
50 Hz 50 Hz

Time (ms)

2OO

u. 100

Maximum value (ms)J5.524 I
Mean value (ms)] 5.238]
Standard de_ation I 0.329 J

= 50(3"

14.

I Minimum value

_'_T_ (ms)14o.o_si
Mean value (ms)] 40.320]
Standard deviation _ 0.585

70 2_

000000 O0 O0 _
..... _me (ms) , i ,

...__

25 Hz

so
42

Time (ms)

25 Hz

Figure 4.5.4-4. Experiment 2 Configuration 11,Link 72-73,Application Performance Parameters

206

the transition frames when a network is taken out of service and is put

back in service. In both situations the relative frame time of the I/0

activity event shifts, resulting in an unusually large or small value for

time delay for the transition frame.

Engine Control Group (Configuration 13). The I/O network out of service

times for this configuration are shown in figure 4.5.4-5. Network 2 is

illustrated in figure 4.5.4-6 as it is grown with no link failures. The

out-of-service times for this configuration are approximately

20 milliseconds with the exception of root link failures which take less

than 10 milliseconds. These times are faster than the flight control

configuration because there is more idle IOP capacity to perform repair

activity.

A summary of the deadline margin and utilization data for each link failure

is shown in table 4.5.4-2. One difference in the data for this

configuration and the flight control computer is that the minimum deadline

margins were not significantly affected by the I/O network repair activity.

When a network is taken out of service, the application processing elements

do not significantly realign. One reason for this is that the processing

demands on the IOP are very light. A timeline of the repair activity from

the 21st repetition of link failure between node 70 and 71 is shown in

figure 4.5.4-7.

The remaining application performance measures

illustrated in figure 4.5.4-8.

during repair are

Regrow Repair Strategy Experiments

The one-shot repair strategy is able to diagnose and repair only a few

active network failures. A check is made to uniquely identify failures

such as an inboard babbling port and to select the proper repair actions.

However, other failures such as an outboard babbling link will have the

same symptoms as a passively failed link. The repair of an outboard

babbler that is diagnosed as a passive link failure changes the babbler's

207

Out ol service time

Minimum value (m$)l S.QO71J
.k____imumvalue (ms)[7.908J

n value (ms)| 7.507 J

,._.devi,,on I o.8os_

mumval.e {ms)12e.lo2]
an value (ms)] 26.000]

!_nderd deviation | 2.273_1

i
M.

5(40

-]0 0 0 0 0
| i . i

._ _,_4 ' "

Link 28.70

-- T_me (ms)

i1

5C

25

Link 70-71

-- Time (ms)

50

I,L

5O

m

I Minimum vsdue (ms)_22.801]

Maximum value (ms)| 22.802]
Mean value Ires)| 22.602_
Standard devia,on / O.O00J

Time (ms)

Link 70-72

5o

inimum value Im.)l 'm._s_
aximum value _mt)l 2s.102]
ean value (ms)J 23.301]
andard deviation | 2.722]

26 24

,_, 0 0 0 0_--_
0 I ! . !

Link 70-73

Time(ms)

Figure 4.5.4-5. Out of Service Time for One Shot Repair Engine Control Computer

2O8

Key

I ,_, lOOHz
, 50 Hz

25 Hz

Figure 4.5.4-6. Network 2 With No Faults

209

Failedlink
i i i t

28-70

i

70-71

70-72

70-73

Table 4.5.4-2.

i I

100 Hz

minimum

deadline

margin(ms)
i

7.141

7.040

7.142

7.147

Experiment 2 Configuration 13 Summary

i ii

50 Hz

minimum

deadline

margin(ms)
I

15.598

14.749

25 Hz

minimum

deadline

margin(ms)
i i I i

34.022

t

33.078

33.989

lOP

utilization
i 1

59%

t

63%

64%15.595

33.996 63%15.448

I/0 system
utilization

i i

39%

i

38%

38%

39%

210

=-

,,,,,, ,, _,,, ,,,,,, ,,,,,,,,,,,,,,,,,i,_, I
40 m= 50 ms 60 ms 70 ms 80 ms

,,n,,InH,n, tni,n, ,hi,,,

,N,[1,,,,,,,n,H,,,,,,,!,==,.,,,,
#1 I IIIII_1,,,,,,,,,i,,,,,,,,, i '''1

Network
#2

80 ms 90 ma 100 ms 110 ms

lOP
I I , I I I I I

!,,! ,,,,,,n, ,,,N,H,,,,,,, ,,,
#1 " '''''I' ''''''''I'' ' ''''I'I ''_''l'''

Legend: _-__Drl t
FDIR 100Hz 50 Hz 25Hz Link

fault
Network

repair
activity

Figure 4.5.4-7. Experiment 2 Configuration 13, Link 70-71, Run 21

211

20O

100

VO jitter

,=_, (m*)l0.77_1
Mexi_m v_ (ms)l0.975I
Meanvalue Ims)]O.e7S|
Standarddevi=ion/ 0040]

115

,, ,0,0 0,0,_

100 Hz

Time (ms)

200

| 400
U..

Time delay

Lv --

156

23

, 1
1 i

0404 _)0_ , •

o: o: o:o:o: o:o: _ o__
100 Hz

Time (ms)

200

IMinimumvalue (m,)l2.7_,i
Maximum value (ms)_ 3,090 1

Mean value (ms)[2.916 [

Standard deviation t 0.073]

446

['-_0 0 0 2 - Time (ms)

5O Hz

Minimum value (m$)120.130]
Maximum value Ims)[20.471_
Mean v_,lue (msl120.300_

s=.=._da,la_o. I o4:i

28

0 , . . O, _me(rns)

,,. (_j . _1: .

50 Hz

U.

2OO

400

Minimum value Ims) l 2.791_]

Maximum value (ms){ 2.957_
Meanvalue (ms)[2._ l
_tandard deviation I 0.076

58

o - Time (ms)

I Minimum value tms)] 40.r_9'I
I Maximum value (ms)/ 40.8901

- _Mean value (ms)| 40.7211
Vs=_rdde_a_on / o.42_

501-

u. _ 34

O, 0 , O, 0 , -- Time (ms)

25 Hz 25 Hz

Figure 4.5.4-8. Experiment 2 Configuration 13, Link 70-71, Application Performance Parameters

212

orientation to inboard, causing loss of communication with the entire

network. The inability to correctly identify this failure results in

wasted repair actions and prolonged out-of-service times.

This experiment measures the duration of network repair activity when a

full regrow strategy is invoked. This is a reasonable approximation of the

repair time for active failures, because repair sequences that do not show

progress must be abandoned and a more time-consuming regrow action used to

guarantee a working network.

Flight Control Group (Configuration I0). The I/O network out-of-service

times for this experiment are shown in figure 4.5.4-9. The significant

difference between this repair strategy and the one-shot strategy is that

the out-of-service times are substantially larger. The repair times for

this experiment slightly exceed the 1 second value used in the reliability

analysis.

Some application performance measures are summarized in table 4.5.4-3, and

the I/O jitter and time delay data are shown in figure 4.5.4-10. The shift

in performance characteristics during repair is similar to those occurring

in the one-shot experiment. The number of values in the bins corresponding

to ongoing repair are greater because of the long duration of the full

regrow repair.

Engine Control Group (Configuration 12). The out-of-service times for this

experiment are shown in figure 4.5.4-11. The full regrow strategy requires

significantly more time than the one-shot repair strategy for the engine

control group. A summary of the application performance is presented in

table 4.5.4-4. Histograms of the I/O jitter and time delay data are shown

in figure 4.5.4-12.

4.6 Experiment Observations

During performance analysis a sequence of experiments is performed to

evaluate normal and failed operation of a candidate system and to evaluate

critical performance issues. The order of experiments is determined by the

performance analyst and depends on factors such as modeling detail needed

213

5O

L&

5O

U.

f ,

U.

Out of service time

Minimum value Isec)[1.075825 I

M=.m.mvalue
M_n v,,lue Isec)[1.08"16 i
Standard deviation (ms) [8.109 I

17

,o....

Link 28-70

Time (ms)

14-

Minimum value (Imc) 11.0,'_3825 I

Maximum value (sec)i1.looe25I
Meanva_Je _=Dc)[1.08._26I

! Standard deviation (ms,) [7.50_ , I

28

0, O, 0 ['-]

,,; ..; "... • . _

Link 70-71

T_me (ms)

Minimum value (se¢l[1.072563, ,,l
Maximum value (se¢)l 1.0g08021

Mean value (sec) l 1.0834421
Standard deviation (ms) [4.957 l

2O

6 9

,, r,,_-'l 0 0

_ ¢) 0 0 0 0 C> 0

Link 70-79

Time(ms)

14.

Maximum value (sec)[1.090,802 [
Mean value (sec)] 1.083143]

i Standard cleviation {ms)15.2tl J

24

on
i

.....

Link 70-87

Time (ms)

50
,50

Minimum value (se_)J 1.080825]
Me,mum value (seo)li.080825l

Mean value (_)11.080826J
Standard deviation (ms) I0.000 ,,J

0 0 0 00Q _

,.; ,.; ,.; ',; ,.; _ •

Link 71-72

Time (ms)

so

I Minimum value (see) ! 1.075825]

Maximum value (sec) 11.100825
Mean value (sec)] 1.087817 J
Standard deviation (ms)] 9.087]

15
11 I--1 10 9

¢_ *,-'- 04

I',,. f_ o

Link 71-75

Time (ms)

Figure 4.5.4-9. Out of Service Time For Regrow Repair Flight Control Computer (Sheet 1 of 3)

214

Out of service time

=P,

U.

5O

Minimum val,ue <_=)1,._8o2]
Maximumvalue (s_l I.o9_ I
Mean value (sec)_ 1.093371 J
Standard deviation (ms) 13.314: ']

31

0,0000 Time (ms)

50
g

I.I.

Minimum value (sec) 11.080825 I
Maxfmum value (sec) _1.080825 I

Mean value (sec) _1,080826 I
Standard deviation (ms) [4.816 I

50

000 000
i i ! i ,

__=_°_

Link 72-73 Link 75-74

Time (ms)

_5o
D

ii

Minimum value (sec)['1.075825 I

Maximum value (_cll 1.085825,_
Meanvalue (_)l'l.oeo22s' I
Standard deviation (rns_ [5.014]

o
U-

I Minimum value (sec) 11.084802
Maximum value "(sec)t 1,0958021
Mean value (sec) 11.091922 I
Standard deviabon/ms) [4.847 ' I

33

28 o_
0 000 0 0 0 O0

, , , , , , , "lime(ms)
OJ _p i_ (,00_ 011 _,- 0,1

ur) I,_ ¢0 0 _.-

O0 000 O0

Link 75-76 Link 78-77

Time (ms)

_5o
g-

U.

I Minimum value (sec) J1.065802'1

Maximum value (sec) l 1.090802 I

Mean value (sec)l_.o_.7sl21
Standard deviation (ms) [8.578 I

5o
g

U.

I Minimum value (sec) 11.075825 [

Maximum value (sec) J _.090802 I
Mean value (sec) 11.083822 I
Standard deviation (ms),] 5.045 I

25

11 14 17 I
o,o n.__m.) ,_-,1°_°,, , ,Or],

_oo
.,,_ ,,._ .,,_ .,.;.,,_ ' _ ,,._ _ _ _.,,-

Link 79-78 Link 79-80

Time (ms)

Figure 4.5.4-9. Out of Service Time For Regrow Repair Flight Control Computer (Sheet2 of 3)

215

ii

I l_mum value (Nc)l 1.05582 _
I Maximum value (see) J 1_0,8_25]
I Mean value (sec) I 1.071025 I
[Sm_rddavia_o"Ims)111._ |

13 14 16

tnonono
' _ _'

Time(ms)

Out of service lime

so
I

L4.

Minimum value (sec) 11.0808.25 I

M_c..imum value (sec) 11.,090802 [
Mean value (sec) J1.087210
Standard deviation (ms) _4.837 l

32

000 O0
t i I i

It) 0 (0 ,.- ¢0

oo. oo.o . .

Link 80-81 Unk 80-84

Time (ms)

50

U.

I Minimum value Isec)ll.O_S]
Memmumv_ue I+ec)l1.omm2Sl
Mean value (sec) 11.0808251
Standard deviation Ims_ J5..OSO J

IJ.

Minimum value (sec) 11.089802 }
Maximum vaJue (sac) 1I. 100825 I
Mean value (sec) J1.094873]
Standard deviation (ms)] 5.549 I

25 25 27 23

0,0,0 0 0 Time(ms) 0,0,0,0 0
I l 04 _ _"M' ,r-m _m _ m_ m-+m+m_+m+
o +

Unk 83-82 Unk 86-85

Time (ms)

LL

I Minimum value (sec)l 1.055825 I

Maximum value (sec)l 1.085825 I
Mean value (sec)J 1.0732251
Standard deviation (ms) 111.214 l

i

ii

Minimum value (sec) J1.091825 J
Maximum value (sec) 11.100825 J
Mean value (sec) / 1.098127 J
Standard deviation (msI J3.625 J

28

" t N oi--Io oooo

++++-+
Link 87-83 Link 87-86

Time (ms)

Figure 4.5.4-9. Out of Service Time for Regmw Repair Flight Control Computer (Sheet 3 of 3)

216

Table 4.5.4-3. Experiment 2 Configuration 10 Summary

Failed link

28-70

100 Hz
minimum
deadline

margin(ms)

50Hz
minimum
deadline

margin(ms)
I

2.582

25 Hz
minimum
deadline

margin(ms)
lOP
utilization

I/O system
utilization

2.995 11.124 79% 68%

70-71 2.691 2.703 10.914 78% 68%

70-79 2.893 2.584 11.206 78% 68%

70-87 2.928 2.560 11.257 78% 68%

71-72 2.905 2.603 11.328 78% 68%
r

71-75 2.742 2.723 10.887 78% 68%

79-78 2.965 2.342 10.964 78% 68%
i i

79"80 2.868 2.667 11.291 78% 68%

87"83 2.928 2.597 11.571 79% 68%

87"86 2.779 2.561 10.930 78% 68%
ii

72-73 2.977 2.432 11.167 78% 69%

75-74 2.916 2.456 11.103 78% 69%

75-76 2.963 2.371 11.548 78% 68%

78-77 2.974 2.641 11.526 78% 68%

80-81 2.765 2.539 11.787 79% 66%
Ill , i, ,,,=

80-84 2.935 2. 754 10.914 78% 68%

83-82 2.880 2.454 10.944 79% 68%

2.954 11.05286-85 78%2.192 68%

217

5OO0

_, 4OOO

3000
LA.

20OO

1000

5O00

_, 4OOO

 ooo
LL

2O0O

IOO0

50O0

4OOO

3000
LI.

2OOO

1000

I/0 jitter lime delay

4143

M.im.m_=.. (--c)I 0.572]
_._x.numvalue (see)I o.es2 I
Mw_=_ (==)1o._5 I
Standarcldeviation(ms}J 0.103 J

3OO0

2ooo

U.

IOO0

650 ..^ 525

1690 0 0,15 0_, 0 0 Time(ms)i i w = = ! i ! I

100 Hz

577

I Mlnimum v_lue (sec) 111.4681

Maximum value Isec) 112.0781
Me=,=u_ I==)111._5I
Standard devialJon (ms) J O.152 I

2945

370 r'--3

i

• . . . , 0

518 432

42 4 , Time (ms)

100 Hz

rMinimumv_ue (se¢)]4.76oI
Maximum value (sec)J 5.947 I
Meanva_ ("¢)14.629l
Standarddeviaeon(ms)I o.2_]

2638

0810 0 0 0 0 0 00_

50 Hz

30OO

2ooo

U.

Minimum value (leC) J 2o.6721
Maximum value (sec) I 23.084 I
IVleanvalue (sec)J 21.876 J
Standard devial_on (ms) J 0.217 J

1529

 me,m,,,," 3100 8'1 I 0 0 0, ! , I I , , r t Time (ms)

50 Hz

Minimum value (sec) I 4.641 I
Maximum value (sec)l 5.524 I
Meanvalue (sec)J 4,823 J
Standard deviation (msI I 0.146 I

3OOO

¢-= 2000

ii

1000
893

122,_ I0 0 0 0 0 0 0 53 "l_me(ms)
i i _ l l _ ! i ! i w i

25 Hz

r Minimum value (sec)J 39.561 I

Maximum value (sec)J 40.969 I
Meanvalue (sec)I 40.283I
Standard deviation (ms I I O.184 I

363 5_ 439
w r----L..

, _ 0 0 3_ j J15 0 0
! i i i I I I | ! i i !

25 Hz

Figure 4.5.4-10. Experiment 2 Configuration 10, Application Performance Parameters

"l_me(ms)

218

Out of se_ce lime

[-Minimum value (ms)_ 166.1021

_,_mumv_o (m'll17_._
p;_.=n value (ms)| _70._1J
_=ndardde_a_o" | I,_S_

I-Minimum v_ue (ms)_ 161.127_

[-Maximum value (ms)| 161.999_
paean value (ms)| 161.781_

[Standarddev_tion | 0.314_

it-
27

Unk 28-70

- Time (ms)

_sc
U. 30

9
 oooo

Link 70-71

Time (ms)

5o
U.

LL

[-Minimum value (ms)/159.12_
Maximum value (ms)_ 169.802_

lean value (ms)| 166,640

_tand_rd deviation

8 000

0 0 0 0 0 -- Time (ms) _ _ _ _

_ _ _ _ _ _ _- ,,n__7_
Link 70-72

Time (ms)

Figure 4.5.4-1 I. Out of Service Time for Regrow Repair Engine Control Computer

Table 4.5.4-4. Experiment 2 Configuration 13 Summary

100 Hz
minimum
deadline
margin(ms)

50 Hz
minimum
deadline
margin(ms)

25 Hz
minimum
deadline
margin(ms)

lOP
utilizationFailed link

28-70 7.141 15.598 34.022 59% 39%

70-71 7.040 14.749 33.076 63% 38%

70-72 7.142 15,595 33.989 64% 38%

=. ii i

70-73 7.147 15.448 33,996 63% 39%

I/O system
utilization

220

t,q3)jitter Time delay

_, 3OO

200
I.I.

IO0

206

_106
U.

Minimum value (ms)[0.772 I
Maximum value (ms)l 1.069 I

Meanvalue (ms)l 0.914 I
Standard deviation I 0.082]

294

134 124

fi!:,,
. .0 _

I

132

iiii

O0 0000000 _'_"

100 Hz

Time (ms)

_' 3OO

¢2oo

,°°f

I Minimum value (ms)llO.139I
Maximum value (ms)[10.642
Mean value (ms)l 10.369 j
Standard deviation [0.106]

259

124 107

1_4 _, 86 82
i ; i i i | !

90999999999 °

100 Hz

Time (ms)

223

184

Minimum value <ms)[2.790 I

Maximum value (ms)[3.791 I
Meanvalue (ms)l 3.052]

Standard deviation J 0.351 I

92

O0 0 0 0
i l i i Time (ms)

50 Hz

2OO

.100
U..

19_.s

90
81

!oo,o:, _o__,

Minimum value (ms) I 19.296 I

Maximurn value (ms) 1 21.305 I
Mean value (ms)l 2o.3ooI
Standard deviation I 0.560 J

Time (ms)

50 Hz

2DO

§ lOO

LL

I Minimum value (m,)l 2.791"I
Maximum value (ms)] 3.791']

Mean value (ms) I 3.701 I
Standard deviation '[0.362 I

109

t, fi
• , io,o,.o,o,o

25 Hz

Time (ms)

2OO

lOO
U.

Minimum value (ms)139,7151

Maximum value (ms)J41.724J
Mean value (ms)_ 40.719 I
Standard deviation [0.501]

130

41 ! 32

0 0 I 0 Time (ms)

25 HZ

Figure 4.5.4-12. Experiment 2 Configuration 12, Link 70-71, Application Performance Parameters

221

for the experiment, how close the candidate is to satisfying the

application requirements, time available to pursue alternate design

options, etc. It is expected that during the evaluation of a candidate,

some performance requirements will not be satisfied and refinements or a

new design vili be needed. Our approach in this situation was to complete

the entire set of experiments and use all results before modifying the

system.

It was obvious at the conclusion of experiment 4 that the candidate

architecture could not meet the growth capability performance requirement.

However, experiment 2 was completed before refining the candidate design to

obtain insight into the candidate's operating characteristics under

failure.

As discussed earlier, one characteristic of the io service model developed

during the performance modeling, is that lover priority IIO data can be

preloaded when higher priority IlO activity is being executed by the IOS.

It is not clear whether the overall effect was beneficial. Additional

complexity in the I/O system service software is required to support this

capability. It was thought that preloading might improve application

performance for heavily loaded configurations such as the flight control

computer.

However, preloading did not occur during normal operation in the selected

flight control configuration. It happened only when a network was taken

out of service for repair. As a result, the deadline margin for the 50 Hz

rate was substantially reduced for one cycle because preloading occurred in

the new Idle time slot before FDIR execution. Here the preloading effect

was negative. Since the interactions can be subtle, there is a definite

benefit to a detailed simulation when considering sequencing and control

alternatives in a candidate architecture.

Preloadlng was used during normal operation of the selected engine control

configuration. However, it was "lightly" loaded and the performance

benefit was minimal.

222

The modeled priority scheme for the IO service processing in the IOP may

inhibit better application performance in some configurations. There are

several configurations in experiment 4 in which lower priority output data

was preloaded before execution of a higher priority I/O completion poll,

Since the preloaded I/O request is lower priority, the high-priority I/O

data are unloaded before starting the preloaded I/O request, This occurred

in the engine control group at the 100 Hz I/O completion poll, with a

preloaded 50 Hz I/O request, Since the time to unload the 100 Hz data was

approximately 1.4 milliseconds, the 50 Hz I/O execution was delayed by this

amount,

An alternative policy would be to start the preloaded I/O activity and then

begin to unload the higher priority I/O data. This would delay the

unloading of the I00 Bz data by one task process switch and the time needed

to start IOS execution, but would begin the execution of the 50 Hz I/O

nearly 2 milliseconds earlier. This rule allows additional concurrency and

would significantly improve the 50 Hz rate group deadline margin with

minimal impact on the 100 Hz rate group. This illustrates the benefits of

the performance simulation in that the direct effects and any unintended

side effects on the application of operating rule changes can be determined

easily. Furthermore, the interaction between the application and system

features can be tuned early in the design cycle.

During normal operation, the preemptive priority scheduler proved useful by

ensuring that the processor was allocated to the task with the smallest

execution deadline. Additionally, during I/O network repair the preemptive

priority scheduler allowed the IOP to perform network repair activity when

no application activity was ready. This has the effect of coordinating the

processing associated with the IlO network repair with the application-

related processing on an as-needed basis.

One concern with preemptive priority schedulers that surfaced during the

experiments is that they can introduce variability in the execution of some

10P processes whose effects propagated to other parts of the system. This

occurred during repair in both the flight control computer and the engine

control computer. The variability arose when two processes became ready to

223

execute at nearly the same time and caused a double context switch. The

variations did not cause any serious operational anomalies in the

application in the selected flight control configuration or the engine

control configuration. However, it did make the difference between meeting

deadlines and failing in one of the marginally overloaded flight control

configurations. This points out the need to thoroughly evaluate the

interaction of the stochastically varying workload and the specific

scheduler rules in all unusual system operating situations (failure

recovery, temporary overload etc.) to ensure no unexpected side effects.

The results presented in this report present an optimistic picture of the

candidate architecture performance. The system was assumed to operate near

certain hardware limits. When more realistic values for the system

overhead functions are available from proof-of-concept testing, the

performance measures will probably suffer. Furthermore, some key

performance interactions were not modeled in the performance simulation.

These include ic network operation and the operation of the shared bus in

each FTP channel.

The application sends time-critical data across the IC network. One

concern is the ability of the IC network to meet the time-critical end-to-

end data transfer requirements of the application during normal operation.

Since the IC network operates with unsolicited messages, the network must

be periodically polled to determine whether any communication has been

received. This IC communications process executes on the IOP, which is

also responsible for the application I/O operation. Therefore, another

concern is the effect of IC network communications on the application IlO

activity.

For the application to complete its I/O activity and IC activity, it must

transfer data from the cp to the IOP through a shared bus. The shared bus

has two states, locked and unlocked. When the shared bus is locked, access

to other users is blocked. A major concern is whether a lack of

coordination between the system processes in the CP and IOP can lead to

shared bus utilization problems. This is a potential cause of serious

degradation in the application performance.

224

5.0 REFINED AECHI_ DESIGN

The candidate system evaluation effort described in section 3 for

reliability and in section 4 for performance demonstrated that the

candidate was not capable of meeting the system requirements. The

predicted safety and mission reliability values exceeded the system

constraints. Furthermore, the predicted timing needs of the major control

functions did not leave adequate growth capability. The flight control

group workload strained the system capacity in both computing and IlO

activity. As a result, the IAPSA II candidate system concept was refined

to improve its performance and reliability.

Three approaches were taken to refine the candidate architecture to better

match the system needs. The first approach was to balance the computing

and I/O workload between the engine and flight control groups. The

preliminary timing estimates showed that the flight control group was

heavily loaded, whereas the opposite was true for the engine control group.

Shifting the system workload from the flight control group to the engine

control groups should reduce the growth constraint problem.

The second approach was to improve the system failure protection. The

reliability results for the candidate architecture show that the dominant

safety failure sequences such as temporary exhaustion of body motion

sensors involved two failures. A goal for the refined configuration, then,

is to maintain flight safety with all two failure sequences. In the

mission reliability area, the candidate architecture suffered from too many

single failure situations. Again, the goal for the refined system is to

maintain full mission capability with all single failures. Steps taken to

achieve these goals will be discussed later in this section.

The final approach for refining the architecture was to reduce the number

of communication elements in the system. Large networks have several

disadvantages when compared to small networks. The preliminary DENET

simulation experiments showed how the size of the individual networks

225

dramatically affected the time needed to regrov a network. Another

negative characteristic of large networks is that the probability of

network repair action increases wlth the number of elements. Finally, from

a performance standpoint, when a fixed number of sensors and actuators are

spread across fewer interface devices, the number of transactions needed to

access them is reduced. Because the transaction overhead time is a big

contributor to I/O activity duration, reducing the number will decrease the

I/O workload. In summaryp reducing the number of communication elements

should improve both the performance and reliability aspects of the system

concept.

The resulting refined configuration is shown in figure 5.0-1. The most

significant change is the organization of system components into two major

groups instead of three. This configuration is physically similar to one

of the options considered for the candidate architecture in reference I.

The two engine control groups of the candidate architecture are collapsed

into one. Functions are reallocated to better balance the system. Details

of these and other changes are presented in sections 5.1, 5.2, and 5.3. A

reliability evaluation of this architectural concept is discussed in

section 5.4, and some timing estimates are made in section 5.5.

5.1 Function Allocation Changes

The application computing functions were reallocated because the

performance analysis showed that the flight control site was overloaded

while the engine control sites were underused. This meant splitting the

functions included in the flight control group in a way that did not cause

communication bottlenecks on the system networks. Another consideration

was the redundancy level match between the computing sites. In a system

without function migration, critical functions that must tolerate two

failures to meet reliability requirements must execute on quadruple

redundant sites. Therefore, in order to move any critical functions, the

destination site must be quadruple redundant.

226

Sensors/
actuators

I/Onetwo_

1

Right
sensors/actuators

IC
network

2
FTP A FTP B

I/O network

Figure 5.0-1. Refined Configuration Overview

Left
sensors/actuators

227

Consideration must also be given to the awkwardness of adapting the

candidate architecture configuration to a single-engine aircraft. With one

engine, one site is responsible for flight-critical thrust control. Loss

of that site is safety critical. Therefore, the engine control site must

be quadruple redundant.

Rather than change the redundancy level of one of the two engine control

sites, the refined configuration has two quadruple-redundant computing

sites. This means that each site is suitable for safety-critical functions

and that the function reallocation process can be relatively unconstrained.

Furthermore, this new configuration will be more adaptable to a single

engine vehicle.

The first step in changing the computing allocation was to combine the

control for both propulsion systems in site B (fig. 5.0-i). The

preliminary timing estimates indicated that this computing load could be

easily handled by one site. Next the high-workload trajectory-following

function was allocated to site B. This offloaded the application computing

in site A. Since it has a relatively slow update rate, the relative time

delay associated with any data transfer over the IC network is smaller than

for the other flight control functions. Finally, the air data functions

were moved to site B. The inlet control function has always required the

highest update rates for air data; the associated move of the air data

sensors to group B also helped to reduce the congestion on the group A I/O

network. The disadvantage of the move was that it introduced some

additional time delay in the air data for the manual control function. As

a result of these changes, the refined system has more evenly loaded sites.

The configuration and functionality of the candidate propulsion system were

reevaluated during the refined configuration effort. Some changes were

made as a result of this study. The changes ranged from device

nomenclature adjustments to revised ground rules for the mission capability

and safety effects of propulsion subsystem failure conditions. The

following subsection provides a brief overview of the differences in the

refined propulsion system.

228

The nomenclature changes for the refined configuration reflect some

mechanization changes assumed for the propulsion control functions. These

changes for the most part had only a minor effect on the system

configuration. The more significant changes were in the analysis of failure

effects on the operational performance of the aircraft.

In the inlet, a forward ramp actuator, an aft ramp actuator, and an inlet

bypass door are controlled instead of the upper ramp, lower ramp, and

bypass ring assumed in the candidate system. The inlet sensors provide

roughly the same measurements as in the candidate system except that the

terminology now refers to forward ramp No. 3 static pressure sensor instead

of duct static pressure sensor. The functionality changes for these

sensors are reflected in the failure analysis results, which is summarized

later.

A different actuation concept assumed for the nozzle devices leads to new

nomenclature. The device that controls engine exit area is now called the

nozzle area actuator instead of the converging nozzle actuator. The

remaining two actuators now control thrust reversing and thrust vectoring

separately instead of jointly. The new devices are the thrust reversing

vane and thrust vectoring flap actuators, replacing the upper and lower

nozzle actuators.

In the candidate system, the fuel flow meter was used along with fuel

metering valve position in a fuel flow model. This model was assumed to

allow perfect identification of all first failures and perfect detection of

all second failures. The flow meter was not used in the refined

configuration propulsion control concept.

The afterburner fuel control mechanization was changed for the refined

configuration. The candidate system concept had a single flow metering

valve that controlled fuel flow to five zones through zone flow control

229

valves. The refined configuration had two metering valves, the afterburner

core and duct metering valves controlling flow to the five afterburner fuel

nozzles. Flow to the different zones was turned on and off in order by

action of an afterburner segment sequence actuator.

5.2 Data Distribution

There are many possible alternatives to the candidate architecture data

distribution approach. These alternatives range from minor changes in the

candidate to entirely different concepts. Only two data distribution

options were looked at in detail during the refinement effort. One of

these incorporated a minimum change to the candidate data distribution

concept, and the other replaced the mesh network with a set of buses. Even

in the bus option the data distribution interface changes were minor. The

candidate system data distribution problems will be discussed before these

options are presented.

The first problem is that the IlO system growth capability for the flight

control group is inadequate. The simplified estimates generated before the

simulation experiments showed that the flight control group was slightly

overloaded, while the engine groups easily satisfied the growth capability

requirement. The more detailed estimates provided by the simulation

experiments showed that the actual growth capability was much worse.

A timeline of the flight control I/O activity showed that there were three

major time users. The biggest time requirement was due to the need to run

the input and much of the output data through the data exchange hardware.

The performance estimate assumed that data would be put through the data

exchange at the hardware speed limit. (Our performance modeling assumes

that the respective system software is extremely efficient.) Successful

data exchange operation is tied intimately to fault-tolerant clock

230

operation. It is also used to indicate whether the redundant channels are

in instruction synchronism. For these and other reasons there are physical

and conceptual limits to increasing speed in this area with the current FTP

operating principles.

Bus activity and DIU turnaround time were the next largest time users for

I/O activity. Bus activity refers to the time spent transmitting data on

the bus, and DIU turnaround refers to the time used by the DIU to interpret

incoming bus messages, take appropriate action, and begin the bus response

message. Here again there are limits to the improvements possible. Bus

speed could be increased easily by going to more advanced techniques, but a

"new node hardware concept may be required if virtual bus operation is to be

maintained. Similarly, faster DIU response time requires either more

powerful DIU hardware or a different system operational concept. Current

operating assumptions are that all device activity (reading sensors or

commanding actuators) takes place in response to command messages over the

network from the FTP.

The time spent waiting to begin postprocessing in the IOP after the IOS has

executed the chain of transactions is also a potentially large user of

time. Since the chain execution occurs without 10P involvement, the

mechanism it uses to detect when activity is completed can be important.

The simplified timing estimate assumed that this time was zero, but a

fairly coarse polling policy was modeled in the DENET simulation

experiments, which showed this area to be a potential problem.

The I/0 activity overload problem was addressed by reducing the number of

transactions on the flight control network. The first step, moving the air

data sensors off the flight control network, has already been mentioned.

The next step, consolidating the system DIUs, will have several beneficial

effects. From a performance standpoint, fewer DIUs means that fewer

transactions are needed to communicate with the system sensors and

actuators. The remaining DIUs are connected to more devices. The amount

of data transferred that is directly associated with the devices is not

231

changed. However, the data associated with each transaction (transaction

overhead) is reduced. Since this transaction overhead data must go through

the data exchange and be transmitted over the bus, a reduction helps in two

of the big tlme-user categories.

There are reasons other than performance for reducing the number of

communication elements in the system. One disadvantage of large networks

is that there are more elements to fail. A system vlth many elements will

have to undergo repair much more often than a system with only a few

elements. Another disadvantage pointed out by the DENET simulation

experiments is that larger networks have exponentially longer regrow repair

times than smaller networks. The sheer size of the larger network can add

to repair computation complexity and time. For these reasons, reducing

network size provides a benefit in reducing both repair frequency and

repair duration.

The candidate architecture uses two I/O networks per group, vlth the

redundant elements divided between them. Having two networks allows the

application to continue operating while one of the networks is being

repaired. An interesting observation is that as the number of IlO networks

increases the compelling need for reconfiguration decreases.

If all the system devices are located on a single network, communications

must be reestablished very rapidly after network failures with at least a

critical set of the devices. The time allowed to restore communication to

this critical subset is limited by how long the application can be safely

interrupted. For these types of systems, the network reconfiguration

action naturally takes priority over the application computing. If the

network repair can't be accomplished in the allowable safe interruption

time, then a single network is unacceptable. In this situation a single

failure can cause loss of safety.

A system with two networks is different in that a critical subset of

devices is unaffected by the network loss, and therefore the repair time

232

deadline is much less constrained. In the candidate system the constraint

is set by the likelihood of nearly coincident faults that jeopardize

safety. The repair action and continued application computing priority

situation is reversed. Because network repair does not have to be

completed to communicate with a critical subset of the sensors and

actuators, it must have lower priority than the application function

required for safe flight. It is allowable for network repair to take

longer than the safe function interruption time. The reversal of priority

means that the repair activity is accomplished in the application Idle

time, which causes its completion to be delayed.

As the number of networks increases, further dividing the redundant system

devices, there is eventually no need for inflight repair. The aircraft can

suffer the loss of an entire set of redundant devices and still meet system

reliability requirements. For this reason only two options for data

distribution were considered in the refined configuration study. These two

options are shown in figure 5.2-I. The natural redundancy in the system

tends to separate the sensors and actuators into four groups. Reliability

concerns will keep redundant electronics elements in separate enclosures.

Figure 5.2-I shows how two sets of quadruple-redundant enclosures would be

connected with the mesh network and the linear bus data distribution

alternatives. The assignment of devices to enclosures is presented in

tables 5.2-1 and 5.2-2. In the mesh network the devices are connected via

two networks, whereas in the bus option they are connected by four linear

buses. The key difference is that the mesh network has spare elements to

allow reconfiguration, whereas the bus does not. These two options are

discussed in more detail in the following sections.

5.2.1 I/O Netvork Option

The mesh network data distribution option is very similar to the candidate

architecture. The key changes are the consolidation of network nodes and

DIUs and the reallocation of system devices. There are still two networks

per major group. Figure 5.2.1-1 shows the layout of one of the group A I/O

233

// ////_ ° _"

I

Figure 5.2-1. Mesh Network and Linear Bus Options

234

Table 5.2-1. Sensor�Actuator Computer Connection--Group A

Node/DIU assignments

Device

Body accelerometers
Body gyros
Pitch stick
Roll stick

Rudder pedal
Flap lever
Pitch trim
Roll trim
Yaw trim
Left canard

Right canard
Nosewheel

Leading edge
L outboard flaperon
R outboard flaperon
L inboard flaperon
R inboard flaperon
L TE flap
R TE flap
L rudder
R rudder

L outboard wing accel
R outboard wing accel
L midwing accel
R midwing accel
L inboard wing accel
R inboard wing accel
FTP channels

(group A)

I I I I
I I I 1
1 I I I
I I I
I I I
I 1 I

I I I

1 1 1 1

Mid

2 2 2 2

2 2 2 2

1 1
1 1

1 1
1 1

1

1

Right wing

1

1 1

1

1 1 1

1 1 1

1 1 1

Left wing

I I

I I

I I

1 1 1

1 1 1

1 1 1

Tail

1 1
1 1

235

Table 5.2-2. Sensor�Actuator Computer Connection--Group B

Dev_e

Angle of attack
Angle of sideslip

Static pressure
Total pressure
Total temperature
Left throttle

Right throttle
Forward ramp
Aft ramp
Inlet bypass door
Forward ramp 3 static pressure
Normal shock totat pressure
Normal shock static pressure
Nozzle area

Thrust reversing vane
Thrust vectoring flap
Fan face static pressure
Fan face temperature
Fan speed
Compressor speed
Burner pressure
Fan turbine inlet temperature
Afterburner pressure
Fan guide vane
Compressor vane
Fuel metering valve
Afterburner core metering valve
Afterburner duct metering valve
Afterburner segment sequencer
Afterburner light off detector
Main fuel shutoff

Air

,1 131,
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1
1 1

Node/DIU assignments

I I

Inlet

uJmJLaJPa

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

Nozzle

Ell Rll L21R2

1 1 1 1
1 1 1 1

1 1 1 1

236

Abbreviations:
F forwardarea
M midarea
RWrightwing
LW leftwing
T tailarea

Figure 5.2.1-1. Group A I/0 Network Layout

Legend:

-_ Deviceinterface
unit

Node

channel

237

networks. Group A has two networks of 10 nodes and DIUs each. This is a

reduction of eight nodes and six DIUs compared to the flight control

network of the candidate architecture. The resulting allocation of devices

to DIUs is shown in the reliability model section. There is one DIU per

network node in the group A networks. There are no dedicated root nodes in

this option; root links are connected to nodes that service DIUs.

The group B I/O network layout is shown in figure 5.2.1-2. Group B also

has two networks, each containing eight nodes and DIUs. Each group B

network is connected to elements on both engines. There is no reduction in

the total number of nodes and DIUs compared to the candidate architecture,

although they are now consolidated into two networks. Devices are

allocated differently than the candidate architecture. The air data

sensors and the throttle command sensors have been moved from the flight

control networks to group B. Like group A, group B has no dedicated root

nodes.

The number of transactions sent over the group A networks has been reduced

due to the consolidation of DIUs. For comparison, the new 100 Bz rate

group has six transactions per network versus the eight transactions of the

candidate architecture. There are six 50 Hz transactions in the refined

design compared to 10 in the candidate architecture. The 25 Hz

transactions have been eliminated. However, the reallocation of devices

and the placement of both engines on the same networks increases the number

of transactions on the group B networks. Group B now has four 100 Hz

transactions, two 50 Hz transactions and four 25 Hz transactions. In the

candidate architecture each engine control rate group had a single

transaction. Thus the relatively overloaded flight control networks have

had a traffic reduction, while the use of the lightly loaded engine

networks has increased. A performance assessment of these changes is

discussed in section 5.5.

One change in the network configuration is due to the dominant reliability

problem found in the candidate architecture. Recall that the layout of the

candidate architecture had each device connected to only one DIU and one

238

Abbreviations:

A air data

RI right inlet
RE right engine
RN right nozzle
LI left Inlet

LE left engine
LN left nozzle

Figure 5.2.1-2. Group B I/0 Network Layout

Legend:

'_ Deviceinterface
unit

Q Node

--- FTP channel

239

node. The reliability evaluation showed that this simple "brlckwalled"

scheme easily satisfied system requirements, with the exception of the body

motion sensors. In the refined I/O network option, the critical body motion

sensors are connected to both group A networks via dual-port DIUs. This is

shown in figure 5.2.1-3. The purpose of this is to ensure that two

failures are required before the system is vulnerable to temporary

exhaustion failures. A critical design requirement generated by the

cross-connection approach in the refined configuration is to ensure that no

single failure in the dual-port DIU can cause simultaneous repair

activities on both networks. Note that the cross connection is only used

for the MID DIUs, where the reliability analysis showed it was required.

There are several system operation alternatives for this cross-connected

configuration. The first alternative is to use the cross-network links

always, transmitting the device data over both networks during normal

operation. This is advantageous because it doesn't require any special

operating modes to avoid temporary exhaustion vulnerability, but it causes

additional transactions on networks that are already heavily loaded.

There are two operational alternatives if the cross-network links are used

only when reacting to a fault. One alternative requires a fast reaction to

a fault, while the other alternative can tolerate a much slower fault

reaction.

The fast reaction alternative would take no action until temporary

exhaustion is imminent. For example, a DIU or node fails followed by a

failure, causing repair on the other network. In the fast reaction

alternative no action is taken until the second failure. The situation

must be recognized by the application and action taken to use the

cross-connection link before a critical time period elapses. Th_ need for

special action must be discerned from the error information provided by the

I/O system services. The special action would consist of (I) selecting

transactions in the existing I/O request that are normally off to

communicate with the devices over the cross-network links, (2) using an

24O

Dual port DIU Nodes

\ J Network 1

/;,,,×/_\ -

/ \ Net.o_k2

Figure 5.2.1-3. Body Motion Sensor Cross Connection

241

alternative I/O request for the remaining good network that contains the

additional transactions for cross-network link communication, or (3) making

an additional, emergency I/O request containing only the special

transactions every compute cycle for the duration of the network repair.

Each of these special action alternatives has certain drawbacks with the

current version of I/O system services. It seems prudent, therefore, to

plan an alternative with a non-time-critical fault reaction.

A slow fault reaction strategy only requires the application to recognize

when the system is vulnerable to a subsequent failure causing temporary

exhaustion. This means that the cross-connection links would be used after

the first applicable failure instead of the second. In this case the

action taken by the application Is not time critical. The vulnerable

situation is conveniently indicated when data from only two sensors are

being sent on one of the networks due to previous failures. When the

application detects this vulnerability it can change the I/O traffic

loading via transaction selection to ensure that a subsequent network

repair will not cause temporary exhaustion. Although this action seems

straightforward, the application must react to a large number of possible

situations (some of which cannot be corrected). This solution does require

a substantial new application redundancy management process.

5.2.2 Redundant Bus Option

An alternative data transfer system outlined earlier consists of four non-

reconfigurable linear buses. The number and arrangement of enclosures,

DIUs, and devices is unchanged. All of the redundant devices are divided

evenly across the four buses. Since the bus is not reconflgurable there

are no network nodes in the system. Communication over the bus system is

carried out just at it is over the mesh network. Recall that the mesh

network operates like a virtual bus, with each device receiving all bus

activity at approximately the same time. The same command/response

protocol is assumed for the bus option. The data distribution interface

and the IO system services are therefore assumed to be identical in this

comparison.

242

The bus option illustrates the limiting case in which the number of

networks in a system is increased to the point that reconfiguration after

communication faults is not necessary. A major benefit of this step is the

elimination of the complex I/0 redundancy management software. Typically,

validation of large, complex software processes is difficult and costly.

Although this is a problem for the building block system provider to solve,

the application designer must have confidence that validation is

achieveable by the time the system is scheduled for first flight. Because

the bus option does not include any of the network reconfiguration

functionality, it sidesteps any associated validation issue.

To allow a more straightforward comparison between the mesh network and bus

options, some configuration aspects were kept constant in both. Only four

connections to the If0 devices were used in both options. This means that

in the bus option each bus is singly connected to an FTP channel, whereas

the mesh network option uses only one root link per FTP channel. Neither

of these may be acceptable as a final configuration choice, but it keeps

the comparison on more even terms. One implication of the bus option is

that an active DIU failure can lead to the permanent loss of the entire bus

and all connected devices. The normal I/0 network recovery action will

disable the DIU link and restore communications in such a situation on the

mesh network. Special design precautions could be taken to make an active

DIU failure unlikely for the bus option. Because this would result in an

unsymmetrlc comparison, the same DIU design will be assumed for both

options.

5.2.3 Electric Power Distribution

The candidate architecture analysis did not consider the details of the

electrical power distribution. In the refined system study more attention

was paid to the implications of the power distribution connection. The

Fault Tolerant Electric Power (FTEP) system study configuration (reference

3) was used as a baseline for IAPSA If. In that study four distributed

243

load centers (ELMC) provided electric power to the critical users. Main

aircraft power buses were connected to the ELMCs, which monitored the

airplane source and switch when necessary. Each load center had an

uninterruptible battery bus for dc users that was tied to one of two

aircraft batteries.

The simplest connection alternative for a system that is primarily

quadruple redundant would have one ELHC source per enclosure. This

alternative was broadly evaluated with satisfactory results in the

candidate architecture reliability study. Each enclosure has a single

local power supply that satisfies the bulk of all enclosure needs. Nith

this single connection organization care must be taken when assigning

electrical connections. All elements that have a dependency relationship

(devices, DIUs, buses, FTP channels) must be connected to the same Ethic

source. This guarantees that when a single source is lost only one level

of redundancy for any device is affected. Otherwise, loss of a single

source could bring down more than one redundant device via a dependency

relationship. For example, a source could affect a DIU (and all attached

devices) on one bus and a device of the same type on another bus.

The single power source alternative presents some special concerns for the

mesh network option that were not evaluated in the candidate architecture

analysis. When one power source fails, one fourth of the nodes fail. As a

consequence, power source loss is another cause of network repair action in

a singly connected system. The most general fix is regrovth of the

network. In a two-network system, regrov must be restricted to a single

network so that the application can continue operation with devices

connected via the other network. Additionally, the power connection layout

must ensure that the half of the network remaining after a power source

loss is a viable configuration, with no isolated nodes.

Rather than accepting single power source losses as a cause of temporary

I/O network failures, the refined design incorporated a dual power

connection scheme. As a minimum, this delays any I/O network effect until

244

the second electrical failure. The specific configuration is shown in

figure 5.2.3-1. Two of the four power sources service all of the elements

on a specific network. Each network node is connected to both of the

network power sources. When both network power sources fail, it is

unimportant that the nodes are lost since all serviced devices on that

network are also lost. With this configuration, power source losses are

irrelevant to I/O network operation.

Another power connection concern is surface control. A hard requirement is

that no two failures can cause degraded capability on more than one control

axis. Otherwise this would be a dominant loss-of-safety situation for the

refined configuration. For single power connection configurations this

means that no two BLMC failures can be allowed to cause passive surfaces on

more than one axis. In the baseline power configuration, each surface is

driven by two channels, each of which is powered by a single source. If

symmetrical flaperon pairs are connected identically, six surface types

must tolerate both failure situations with only one surface-type failure.

These are the right canard, right rudder, inboard flaperons, outboard

flaperons, left canard and left rudder. Because there are six possible

combinations of the four power sources taken two at a time, this seems

feasible.

For the bus option the surface connection constraint can be met with no

problems. However, in the mesh network option, the surface control

constraint conflicts with the node power concept developed earlier. The

node power concept basically means that all devices on one network are

powered by the same two sources. Without a special fix, satisfying both

constraints would mean that both actuation channels on some surfaces would

be signaled over the same network. Thus, during temporary network outages

for repair, that surface would switch to a passive operating mode. This

would violate the network connection ground rule established during the

candidate architecture layout. The solution used in the refined

configuration is shown in figure 5.2.3-2. Instead of the single power

source connection, the MID DIU is connected to two power sources.

24S

Nodes

DIUs

1 /
I

]

\

i\1
]

Figure 5.2. 3- I.

To devices

Network Option

Refined Configuration---Node Power

246

A8ABcoco

Flaperons

I II I
Canards

L

J Rudders

Single Connection Alternative--Network Option

Figure 5.2.3-2. Surface Actuation Power Connection

IL
Flapemns

247

Thus in the mesh network option there are several exceptional

characteristics about the MID DIU and its devices. Its network cross

connection and dual power sources are unique. This makes comparison with

the bus option somewhat awkward. However, this comparison would be much

more difficult if cross connection and dual power sources were used for all

enclosures in the mesh network option.

5.3 Actuation Changes

One area of concern in the candidate architecture reliability study was

surface actuation. The problems included two failure situations resulting

in a loss of safety and single failure cases that caused loss of mission

capability. Two major contributors were undetected actuation channel

failures and active DIU failures.

The first contributor, undetected channel faults, was addressed by

increasing the redundancy of the actuator processor and associated position

sensor. The operating concept was changed to require two-processor

agreement to drive the surface. The actuator channel nov relies on

comparison for failure detection rather than the self-test hardware and

software. When the processors disagree, the channel must fail passive.

This additional redundancy leads to fail-operatlonal/fail-off capability

for each surface.

Several candidate configurations were examined to define the

Interconnection of the actuator channels to the IlO network. Concepts

where the actuation was invulnerable to temporary exhaustion and did not

require dedicated cross actuator channel data paths were favored. The

straightforward scheme used in the refined configuration requires that the

concept be protected from active DIU faults.

248

The second major factor, active DIU faults, was addressed by changing the

actuator communication concept. In the candidate architecture, the DIU has

the responsibility for ensuring message integrity for its serviced devices.

The postulated active failure mode causes the DIU to continue meeting the

interface protocol while corrupting the commands sent to the actuator. The

change for the refined configuration is the reassignment of responsibility

for ensuring message integrity. The actuator processor now verifies the

message that contains its position command. This end-to-end check

guarantees that a good actuator channel will not use a corrupted command.

This solution has the disadvantage of requiring additional verification

processing in the actuator processor when the actuator position command is

updated. In addition, the DIU must handle the transfer of a larger amount

of data to each actuator interface. It must store the entire command

message upon receipt and then write it to each actuator. Therefore DIU

processing requirements are also increased.

5.4 Reliability Bvaluation

The two data distribution options for the refined configuration, mesh

network and bus, were evaluated to verify that the changes allow the system

to meet its reliability requirements. The reliability measures evaluated

included safe flight and landing, full mission capability, and sustained

operational capabillty. The first two measures were used in the

rellabillty evaluation of the candidate system described in section 4. The

new sustained operational capability measure is described in the following

paragraphs.

The sustained operational capability measure was used to compare the two

options, emphasizing their ability to operate with failures. A key benefit

of reconfigurable systems is their ability to restore operational

performance after failures. The major Air Force emphasis in reliability

and maintainability is operational performance over time. Maintenance

aspects are very important in longer term measures, but they are beyond the

scope of the IAPSA II study. Therefore a measure was needed that did not

249

involve maintenance activity. The selected measure was based on a forward

base operating scenario. The scenario involves rapid deployment to a

forward base followed by iuediate initiation of combat operations without

any integrated control system spares. The combat scenario envisioned

relaxed operating rules intended to maximize combat availability.

Sustained operational capability is the probability that an aircraft can

continue to fly combat missions without maintenance on any of the control

system elements. Two conditions were assumed necessary for combat mission

dispatch. First, the system must have full mission capability, and second,

it must be able to absorb one more failure and continue to a safe landing.

The assumed operating rules are subject to discussion. In any case, this

is a somewhat realistic measure of the two systems' abilities to operate

with failures. The duration of this operational scenario is 50 operational

hours. This reflects about a week of intensive operations. The results are

the probability that a specific aircraft would be unable to maintain combat

operations for the 50-hour period because of control system failures.

Some different reliability modeling techniques were used in the refined

system evaluation. The first technique was explicit truncation of the

models at a specified number of failures. Truncation greatly simplifies

the reliability models. The technique is based on the fact that the

dominant system failure sequences involve a small number of element

failures. Contributions to system unreliability from sequences with a

greater number of failures are less likely and therefore not significant.

This allows all system states having a greater number of element failures

to be modeled in an approximate manner. For our study, safety model

truncation at the third failure level captured the dominant system failure

sequences. The mission and sustained capability models were truncated at

the second failure level.

The baseline truncation technique is shown in figure 5.4-1. The technique

is based on the CSDL approach described in reference 4 used for the

Computer Aided Markov Evaluator (CAME) program. The system states are

250

Failure
level

0 1 2 3 4

Upper
bound
state

Figure 5.4-1 Safety Model Truncation

251

categorized by how many failures have occurred in the system and whether

the system is operational or failed. The number of distinct states in each

category rises dramatically with failure level. In the figure 5.4-1

example, the dominant system failure sequences involve three or fewer

element failures.

Model construction is exact up to the third failure level. That is, all

state information and all transition rates are exact for all sequences

leading to the third failure level. The first simplification step is to

aggregate all operational states that have three failures into a single

state. All the state information is lost as a result of this aggregation.

Next a conservative transition to the next failure level is built from the

aggregated operational state. This transition is conservative because it

is larger than the sum of the actual transition rates that it replaces.

The destination of this conservative transition is the upper bound state,

which represents all the system states that have four or more failures.

The upper bound state is conservatively treated as a system failure state

even though it contains many operational states. When evaluated, the upper

bound state provides a conservative estimate of the error introduced by the

truncation technique. Viewed another way, an upper bound on the

probability of system unreliability is provided by the sum of the

probability of the system failure states and the upper bound state. A

lower bound on the system unreliability is provided by the sum of the

system failure states containing three or fewer failed elements.

Further simplifying techniques were used that amounted to modification of

this baseline truncation technique. The justification for these techniques

is that the relative likelihood of certain key system failure sequences is

important to the evaluation of a system's strengths and weaknesses.

Therefore it is not usually necessary to know the specific failure

situation probability with more than one or two digit accuracy. The

resulting simplifying technique ignores some sequences that contribute to

the system's dominant failure situations when they contain more than a

certain number of failures.

252

For example, failure of both hydraulic systems causes loss of safety. A

large number of three-failure sequences involve failure of both hydraulic

systems and an unrelated element. Taken together, the probability of all

three-failure sequences is much smaller than the dominant two-failure

sequence. Leaving out the three-fallure sequences introduces only a small

error in the likelihood of the specific sequence, and reduces the system

lower bound for unreliability. The benefit is a much smaller model in

terms of states and transitions.

Another simplifying technique was used with common element failures.

Common elements are those that affect the functional success of many other

system elements. Examples include communication elements, such as nodes

and DIUs, and power sources such as hydraulic systems or ELMCs. From a

reliability modeling standpoint the other elements are dependent on the

common element. The dependency simplifying technique models only the most

damaging transitions. These are the transitions that affect all the

dependent elements. The transitions that are left out of the model are

those that might occur after a previous failure has affected one or more of

the dependent elements.

For example, if a common element affects two sensors, A and B, the most

damaging transition will fail both sensors. If B has previously failed_

however, the subsequent common element failure will only reduce the

redundancy of the A elements. With the above simplifying techniques, the

later transition would not be included in the reliability models. In this

case the destination state of the unmodeled two-failure sequence has the

same capability as the destination state of a much more likely

slngle-failure sequence.

In all cases where this dependency simplifying technique was applied in the

refined configuration evaluation, the unmodeled transitions would have

taken the system into the aggregated operational state. In other words,

none of the unmodeled transitions would have appeared in any of the

253

dominant system failure sequences. This technique greatly reduces the

number of transitions that must be modeled. However, the major advantage

is the reduced effort needed to generate ASSIST statements to cover all the

posslble transitions. Effort is still required to derive the correct

ASSIST expression for the remaining transition as a function of system

state. A correct transition rate is needed to ensure that the system

failure rates involving common element failures are correct.

As a final consequence of the dependency simplification, the states

involving unmodeled transitions will not appear in the aggregated

operational state of the baseline truncation model. Ultimately, the

computed probability" of the upper bound state will now be too low. It

should be noted that the upper bound state is also low because of splitting

the system into separate section models. The baseline truncation technique

assumes that all system elements are included in the model. This is not

true in our separate section approach. Other techniques are needed to

estimate a usable probability for the upper bound state. For the refined

configuration study, the lower reliability bound values were used to

evaluate the system.

5.4.1 Critical Assumptions

The system elements in each physical enclosure were treated together for

modellng purposes. This includes the local power supply and

communicatlon-related elements. A separate section model was created for

each type of enclosure. The key system functions performed by the section

model elements are shown in table 5.4.1-1. Three separate versions of the

section models were created for this evaluation. These versions covered

the safety, mission, and sustained operational capability failure

conditions. Additionally, some of the section models had a version for

each of the data distribution options, mesh network or bus.

The refined configuration models treated four new situations that were

different than the candidate architecture. One difference in the mesh

254

Table5.4.1-1. Section Modeling AIIocation

Section

Forward

Mid

Tail

Right

wing

System function Loss effect

Pitch command sensing
Roll command sensing

Yaw command sensing
Flap command sensing

FTP A computing

Body rate sensing
Body acceleration sensing
Canard actuation

Leading edge actuation
Nose wheel actuation

Rudder actuation

Flaperon actuation
Trailing edge flap
actuaticn

Outboard wing acceleration
sensing
Mid wing acceleration
sensing
Inboard wing acceleration
sensing

Safety

Safety
Safety
Mission

Safety

Safety
Safety
Sa_ety
Mission
Mission

Safety
Mission

Mission

Mission

Mission

255

network option was the likelihood of system failures involving single

network operation. The refined configuration has fewer root links than the

candidate system. Thus the probability of a permanent loss of an entire

network is much higher than it was in the candidate architecture. Once an

entire network becomes inoperative, failure of a critical sensor or a

communication device on the remaining network causes a loss of safety. In

the first case the two remaining sensors disagree, and in the second case

no critical sensors or actuators are accessible during the subsequent

network repair.

All of the elements involved in the single network operation are

conveniently contained in the FORWARD model (table 5.4.1-I). The

connection paths to the network depend on the FTP channels, the Nl/root

links, the root nodes, and the electric power sources. The failure of any

one of these elements will affect one of the connections to the two

networks. Certainly two-failure sequences will therefore eliminate an

entire network. The probability of single-network operation is determined

exclusively with the FORWARD model.

Another new modeling situation was operation of the mesh network system

with MID enclosures cross connected to each network. The purpose of the

cross connection is to allow the skewed sensors to be accessed from the

other network to eliminate vulnerability to temporary exhaustion. It was

assumed that I/O activity was reconfigured by the application immediately

after failures, which made the system vulnerable to temporary exhaustion.

With this kind of fault reaction in operation only a few two-failure

conditions leave the system vulnerable to motion sensor temporary

exhaustion. These situations occur when certain pairs of MID nodes or node

and DIU combinations have failed. The MID section models handle these

situations explicitly.

The mesh network option MID area enclosures are also unique because they

are connected to two electrical power sources. Therefore power source

failures have no effect on MID area devices until both sources for a set of

256

DIUs are lost. However, when this happens redundancy is dramatically

reduced. For the mesh network power connection layout, this event

coincides with the loss of a single network. Power source failures leading

to this special situation are the only important ones for the MID devices.

Therefore only electrical failures that fall in this category are modeled.

The final new situation involves changes in the surface actuator

configuration and operation. The additional redundancy and interface

operation changes were intended to produce fail-operatlonal/fail-off

capability for each surface. This means that the controller and

communication device failures cannot affect safety until the fourth failure

level except for temporary exhaustion situations. Similarly, these

failures can't affect mission capability until the second failure level.

The refined configuration modeling effort assumed that this fail-

operational/fail-off capability was perfect and took advantage of model

truncation at the third failure level to greatly simplify the safety

models.

Propulsion system device criticality assumptions were different for the

refined configuration. Some of the differences were due to the

configuration changes between the candidate system and the refined

configuration, while other differences were due to the functionality

changes made during the propulsion system review effort. The following

subsection outlines the major differences.

One change in functionality occurred in inlet sensing. The candidate

evaluation assumed that a loss of inlet sensors reduced performance to the

normal level as defined in section 3. For the refined evaluation, loss of

the sensors degrades supersonic performance somewhat but supersonic

operation is still possible. The assumption is that the system failure

condition resulting from the degraded supersonic performance falls in the

full mission capability category.

257

Another change was in the engine sensing area. In the candidate system,

full performance capability was available with four of the five sensor

types. The missing sensor value could be satisfactorily synthesized from

the remaining sensor values. In the refined evaluation, the fan speed, the

burner pressure, and the afterburner pressure are needed to provide normal

performance capability. Compressor speed and fan turbine inlet temperature

provide capability at the full performance level. The analytic redundancy

method is still used for failure detection and identification among the

engine core sensors.

The assumed consequences of guide vane actuation failures were different in

the refined configuration. Loss of fan or compressor guide vane actuation

led to loss of normal capability in the candidate evaluation. The same

situation in the refined evaluation results only in a loss of full

performance capability, which is less serious.

The failure assumptions for the nozzle area control actuator are changed

for the refined evaluation. The candidate evaluation assumption was that

failure resulted in normal capability, but in the refined evaluation

failure reduced performance to the low capability level. Thus, nozzle area

control is more critical in the refined evaluation.

Not all of the changes in the group B section models are due to the

propulsion system reevaluation. In the refined configuration the group B

FTP controls both engines. Failure of three of the four channels therefore

leads to loss of safety. Failure of two of the four channels is a cause

for loss of sustained operational capability. Because it accesses the

safety-critical air data sensors, the group B network is vulnerable to the

single network failure situation. It should be noted that in the refined

evaluation the static and total air pressure sensors were explicitly

modeled as mission critical instead of safety critical.

Another difference in the refined evaluation was that the propulsion

devices and sensors were assumed to be invulnerable to mesh network

258

temporary exhaustion. This means that the propulsion system control laws

are mechanized so that commands can be interrupted for short periods. As a

result, loss of commands to the propulsion actuators during network repair

causes at most a slight hesitation in engine acceleration or deceleration.

This is different from the flight control assumption, in which interruption

of control commands to the unstable aircraft causes loss of safety.

5.4.2 Results

The results of the safety model evaluation are summarized in table 5.4.2-1.

The loss of safety probability is dominated by group A device failures.

Elements in group B have a smaller effect on safety. For this reason bus

option versions were not created for several group B safety models.

Nevertheless, the table shows that both refined option configurations meet

the system safety requirement. Failure situations involving rare

mechanical actuator jams and loss of both hydraulic systems are the largest

contributors to unreliability. These results differ from those of the

candidate architecture because of the absence of the special surface

control failure sequences and a large reduction in the likelihood of body

motion sensor temporary exhaustion. This is expected because the changes

to the system are an attempt to alleviate precisely those problems.

For the mesh network option, the two largest contributors to unreliability

are temporary exhaustion failure of the primary surface actuator channels

and loss of FTP channels. (The FTP channel failure sequence has the same

likelihood in both options). Both of these situations involve

three-element failure sequences.

The new single network operation failure situation is not negligible, but

doesn't appear to be a significant problem. As mentioned previously, it

would be very easy to add a few root link connections to improve the

network access redundancy.

network option was to

Nevertheless, the system

requirement.

The main reason for four connections in the

facilitate comparison with the bus option.

as defined easily satisfies the reliability

259

The table shows that the bus option is not vulnerable to any of the special

network failure modes such as temporary exhaustion or nearly coincident

sensor-network recovery. On the other hand, certain functional blocks In

the bus option did have higher unreliability due to failure sequences

Involving permanent bus failures. These include the FORWARD area sensors

and the MID area sensors.

The comparison between MID sensors in table 5.4.2-1 is affected by more

than just the central bus failure dependency. The mesh network values are

also better because of the dual power source connection to each DIU and the

cross connection of each DIU to both networks. These special features

further enhance the benefit of the mesh network option compared to the bus

option in the table.

The unreconfigurable bus introduces a new central dependency aspect to the

reliability model. However, note that even though the unreliability of

some functional groups is worse in the bus option, the system requirement

is still easily satisfied. The elements that play a role in the central

bus reliability are the FTP channel, the FTP bus interface, the bus media

(wires, production break connectors, etc.), and the individual DIUs. Of

these elements, the bus media unreliability is insignificant. The key

Individual contributor to central bus failures is the FTP channel. Its

unreliability overshadows the other elements. As mentioned previously,

additional bus interfaces could be added to other FTP channels, just as

additional network interfaces could be added in the mesh network option.

This would greatly reduce the likelihood of central bus failures.

The DIUs or bus interface units (BIU) connect the devices to the central

bus. Without special design features, certain single DIU failures will

bring the entire bus down. An active DIU failure mode was modeled for the

bus option, which causes the loss of all devices connected over that bus.

Because of this hazard, practical bus designs for critical systems have

special design features to make central failures very unlikely. However,

260

=-

Table 5.4.2-I. Safety Mode/Results (x 10 -7), 3-hr Flight

Sequence Two network Four bus

Exhaustion

• Forward sensors
• Mid sensors
• FTP

• Surface jam
• Hydraulic supply
• Air sensors

• Engine-out throttie
• Both engines
• Surface pair safe

Nearly coincident

• Like sensor
• FTP
• Sensor network
• Dual network

Temporary exhaustion

• Forward sensors
• Mid sensors
• Surface controllers
• Air sensors

Single network

0.00034
0.00040
0.034
0.24
0.18

0.0012
0.0072
0.0016
0.00014

0.00027
0.000144
0.0058
0.0034

0.00083

0.00012
0.013
0.0012

0.0112

Total 0.501 *

° Not calculated

0.0032
0.029
0.034
0.24
0.18

Q

t

0.00014

0.00027
0.000144

261

this study assumed no special design features in order to simplify the

comparison between the mesh network and bus option. To assess the

resulting hazard, a nominal value of 10 percent active DIU failures was

assumed In the models. A sensitivity study showed that the table 5.4.2-I

results were not significantly affected when the active fault percentage

was varied from 1 percent to 50 percent.

As mentioned earlier, group B elements have a small effect on system

safety. The largest group B contributor is the failure of the FTP. This

three-failure sequence results in a total loss of thrust control. An

interesting failure condition is listed in the table as engine-out -

throttle. This sequence is the shutdown of an engine for some reason

followed by the failure of one of the two remaining throttle position

sensors. The engine-out - throttle situation also results in a loss of

thrust control. It should be noted that the group B network contributes to

the single network failure situation. These kinds of failure conditions

occur when access to an entire network is lost followed by a failure of one

of the safety-critical airflow sensors.

The contribution to loss of safety due to failures in both engines was

estimated by combining the results of several section models. The results

of the separate section models that computed loss of normal performance

capability in one engine were carefully combined to provide this figure.

Correct combination of results was very difficult because much effort was

required to adjust the section model results to cover only mutually

exclusive situations. (Of course, the error introduced by ignoring this

adjustment step turned out to be insignificant.)

The results of the full mission capability evaluation are presented in

table 5.4.2-2. Unlike the loss of safety situation, the mission

unreliability is dominated by the group B elements. Comparison of the mesh

network and bus options shows that the network does better in mission

reliability but that both systems meet the system requirements. A key

assumption in this evaluation is that the mission can be continued after

262

Table 5.4.2-2. Mission Model Results (x10 -4), 1-hr Flight

Sequence Two network Four bus

Forward sensing
Mid actuation
Tail actuation

Wing actuation/sensing
Air sensing
Inlet actuation
Nozzle actuation

Engine devices
Electric power supply
Hydraulic power supply

Single network
Central bus failure*

O.00022
0.0009
0.0015

0.0076
0.00016
0.099
0.099
0.205
0.00015
0.00002
0.0015

Total 0.415

0.00059
0.0038
0.0027

0.014
0.00038
0.100
0.100
0.212

0.00002

0.0061

0.4'40

* Includes electric power and FTP channel

263

one of the two hydraulic systems fail because all actuators are dual. If

loss of a single hydraulic system is a mission-abort condition, hydraulic

supply failures would dominate the mission criteria.

The predominant mission failures were special single-failure situations

involving the propulsion actuators. Specific causes were control valve

jams and uncovered position sensor and valve drive failures. These

failures prevent device control and result in the loss of full performance

capability for its propulsion system.

A key assumption reflected in these results is that a mission can be

continued after two "safety-critical sensors or two FTP channels are lost.

The system is still able to perform all functions, but, as in the hydraulic

system situation, one more failure causes loss of the aircraft. If these

situations are cause for mission abort, several more two-failure sequences

will contribute to mission unreliability. The central effect of bus

failures is more apparent in this model than in the safety model. Like the

safety evaluation, the special features of the MID configuration make the

network option MID sensors more reliable.

Table 5.4.2-3 summarizes the results of the sustained operational

capability evaluation for the refined configuration options. The network

option also has the advantage in this comparison. The dominant failure

sequence, given the assumed operational rules described in section 5.4.1,

is loss of a single hydraulic system. With only two systems, a second

hydraulic failure causes loss of the aircraft. Therefore the aircraft

requires maintenance before dispatch on another combat mission. This

single failure situation masks somewhat the effects of other system failure

sequences.

The ground rules for dispatch in this sustained capability model make the

safety-critical sensors and FTP channels play a direct role. Unlike the

mission model, failure of either two FTP channels or two safety-critical

sensors is a system failure condition. It should be pointed out that in

264

Table 5.4,2-3. Sustained Capability Results (x10"2), 50 hr

Sequence Two network Four bus

Forward sensing
FTP

Mid sensing/actuation

Wing sensing/actuation
Tail actuation
Air sensors
Inlet actuation
Nozzle actuation

Engine devices
Hydraulic power supply
Single network
Central bus failure

(A only)

0.019
0.184
0.022
0.190
0.037
0.033
0.102
0.102

0.304
0.450
0.015

0.053
0.184

0.108
0.350
0.066

NC
NC
NC
NC

0.450

0.024

Total 1.46 NC

265

the sustained operational capability results the FTP channel and electric

power failure combinations are listed as FTP failure sequences, whereas in

the mission model they are shown as central bus failures. The central bus

failure entry in the sustained capability table includes all failure

sequences resulting in loss of two buses except for FTP channel and

electric power source combinations.

S_.nsitivity Study

A limited study was performed to assess the sensitivity of the reliability

evaluation results to the model parameters. The dominant failure sequences

in the safety models and the mission models were examined to see how model

parameters such as component failure rates, active failure fractions,

uncovered failure fractions, etc., entered into the system unreliability.

The limited assessment made use of the fact that the group A elements

dominate the safety reliability and that the group B elements are most

important to mission capability.

To judge whether a parameter was critical, its value was increased by an

arbitrary multiple and the section model(s) recalculated to provide the

effect on reliability. If the resulting change in reliability exceeded the

system constraint the parameter was critical. The multiple assigned to the

parameter was based on how well it was known. Parameters such as component

total failure rate were increased by a factor of two. When the parameter

was not as well known, such as an active failure fraction or percentage of

uncovered failures, it was increased by an order of magnitude. Finally,

for certain very unlikely failure modes, such as the probability of rare

mechanical jams, the likelihood was increased by two orders of magnitude.

The intent was to vary the parameters in a way that reflected the amount of

uncertainty in the parameters. If variation in the model parameters causes

a violation of reliability constraints, small variations in better known

values are cause for the same level of concern as larger variations in less

well known values.

266

A look at the most likely safety sequences using the above criteria showed

two significant parameters. One was the fraction of surface actuation

failures leading to a Jammed surface. The assumed equivalent nominal

failure rate for this mode corresponds to an extremely improbable event. A

nominal value of one event in lOE+9 hours was used. The sensitivity study

shoved that this value could be increased by only a factor of 3 before the

safety constraint was violated. This margin seems low for such a rarely

occurring parameter.

The other critical parameter for safety was the failure rate of the

hydraulic power system. There are two hydraulic power systems on the

• aircraft. The sensitivity study shoved that the safety constraint was

violated if the failure rate was increased by a factor of 2. The reduced

margin on this parameter would indicate a need for close monitoring of the

development of the system or perhaps alternative design provisions.

An analysis of the most likely mission failure sequences also pointed out

two critical parameters. Both parameters contributed to the propulsion

system single-failure situations. The first parameter was the fraction of

propulsion actuator control valve failures leading to a Jammed valve. Such

a failure caused central redundancy management to safe the actuator. A

nominal value for this failure mode was one event in lOE+6 hours. The

sensitivity study showed that an increase in the value by a factor of 3.5

was enough to violate the mission capability criterion. Again this appears

to be insufficient margin for a parameter that is not well known.

The second critical mission parameter was coverage of the actuator

elements. A nominal coverage value of 0.99 was assumed for the position

sensor and the drive elements. If this value were reduced below 0.95 the

mission capability constraint criterion would be violated. Because this

does not provide an order-of-magnitude margin, this parameter is therefore

critical to the mission success for the refined configuration.

267

5.4.3 Transient Threat

The reliability evaluation described to this point deals only with the

effects of permanent faults. Another concern for highly reliable systems

is the effect of transient failures. A transient failure is characterized

by faulty behavior of an element for some finite time followed by

fault-free operation. The effect of a transient may persist after the

fault disappears, for example, in an erroneous data value. For redundant

systems, transients are primarily a redundancy management concern. If the

effect of the transient failure were contained by the redundancy management

process, the ideal action would be to wait for the transient to disappear.

Unfortunately, it is not possible to tell whether a fault is transient or

permanent.

The reaction of a specific redundancy management process to a transient is

design peculiar. A major problem encountered when designing for transients

is characterization of the threat. Because they disappear after a short

time, solid operational data on transient rates and duration are scarce. A

limited, parametric evaluation of the transient threat was performed during

the refined configuration study. A benefit of this kind of transient study

is that it shows the system designer the effectiveness of the redundancy

management processes, including the effect of certain internal process

parameters.

Sensor and actuator redundancy management processes must handle normal

device mismatches to satisfy stringent missed alarm, false alarm, and

failure transient criteria. Complex filtering processes are commonly used

for this purpose. These characteristics make these processes less

vulnerable to transients. On the other hand, the computing redundancy

management requires the redundant channels to maintain strict instruction

synchronism and bit-for-bit output agreement. For this reason computing

transients were modeled in this limited evaluation of the IAPSA II system.

268

Since the evaluation revolves around the redundancy management behavior,

some key features of the FTP FDIR process were modeled. These key features

include exact voting of all redundant channel outputs every computing

cycle, maintenance of instruction synchronism in all redundant channels,

and periodic self-tests that ensure that each channel's memory agrees with

the others. A key study assumption is that the transient affects only one

of the redundant channels. If more than one computing channel is affected

by the transient event, it is not possible to prevent errors from

propagating to the rest of the system. The result is catastrophic system

failure.

The transient fault-FDIR interaction model is shown in figure 5.4.3-1. A

state diagram for the system as it responds to the transient event is shown

at the top of the figure. A timeline showing when the FDIR processes take

place during cyclic execution of the application is shown at the bottom of

the figure. The transient event modeled in this study causes an error that

does not disappear by itself. A transient event that changes a memory

value corresponding to a program constant would cause this kind of

behavior.

The model in figure 5.4.3-1 shows three possible transitions after the

transient event occurs. The transition marked "scrub" indicates return to

normal operation, which occurs if the periodic background FDIR process

corrects the error before its use in the system computation. There are two

possible outcomes if the error is used by the computation before this

"memory scrub." One transition models the case in which the affected

channel produces an output that disagrees with the other channels, while

the other transition models a loss of synchronization by the affected

channel. There is a big difference in the effect of these transitions on

the system.

Loss of synchronization is critical for the IAPSA system because of the

intense time-critical workload. The normal FTP FDIR reaction is to

activate a resynchronization process. The resynchronization process brings

269

Recover

1

Scrub

.... _Evo_....

Scrub and r__

I
I
I

Disable

Legend:

1 Vulnerable to nearly coincident
2 Vulnerable to transient exhaustion

_"] J FDIR [ICompute[[Background I _-_[--_'_lCompute[IBackground I_-][FDIR I

t t t
Vote outputs Application Synch check Sell tests
(part of I/O) computing Vote check Detailed error
activity Reconfigure analysis

(if needed)

Figure 5. 4.3-1. Simplified Model

270

the channels back into instruction synchronism and then aligns all volatile

memory by voting it through the data exchange. This last step guarantees

that the execution state of the channel being promoted is identical to that

of the other channels.

The problem is that memory alignment must be completed before application

execution can resume. Rough calculations indicate that even with very

optimistic assumptions, such as data exchange operation at the hardware

limit and a minimum system RAM implementation, the time required for

channel restart is a major fraction of the IAPSA II minor frame. Thus it

is assumed that channel restart cannot be accomplished in the available

time. Loss of synchronization in a channel is just llke a permanent

channel fault for the rest of the flight. Resynchronization might be

possible using a strategy of terminating the mission-critical functions at

pilot discretion before attempting resynchronization. Sequential restart

of the mission-critlcal functions might then be possible after

resynchronization. This strategy and the resulting reliability trades

between mission capability and safety were not investigated further.

The transient study therefore assumes that the recovery action for a lost

synch fault is to retire the channel. Before recovery, the quad system is

vulnerable to a nearly coincident fault in the same way that a channel is

vulnerable while recovering from a permanent fault. System sensitivity

data were generated using the percentage of faults that cause a loss of

synch as a parameter. The other transient faults were assumed to cause

output disagreement.

The modeled recovery sequence is different for faults that cause output

disagreement. First, the "soft" fault may take longer to diagnose than

loss of synch. During this period before disabling the channel, the system

is vulnerable to another nearly coincident transient or permanent fault.

Once the channel is disabled, the FDIR process periodically checks to see

if the channel is still producing errors. If not, the channel is restored

to operation. In our model the channel is restored once the periodic

271

background process has corrected the error, ghen three FTP channels remain

in operation and one of them is waiting for transient restoration, the

system is vulnerable to a transient or permanent fault. This situation,

termed transient exhaustion, results in a disagreement between the two

voting channels. Since FDIR is unable to determine which channel is at

fault, system loss is assumed.

The transient model for the loss of safety failure condition was evaluated

using ASSIST and SURE. The model transitions were all approximated using

exponential distributions. This is a fairly coarse but reasonable

simplification for this sensitivity study. The nominal assumptions for the

transient model are as follows. The mean time between the transient and

the use of the corrupted data in the computation is 5 milliseconds. A

nominal value of 50 percent of transient faults lead to a loss of

synchronization. The ratio of the memory scrub period to the memory use

period was 8. The mean channel recovery time was 20 milliseconds. Note

that with these nominal model parameters, the probability of loss of safety

due to FTP failures is significantly larger than the value shown in figure

5.4.2-1.

The sensitivity to the rate of transient faults is shown in figure 5.4.3-2.

The figure shows that transients having the characteristics of our model

can become the dominating failure sequence if their rate of occurrence is

high. Figure 5.4.3-3 presents the sensitivity of the system to the fraction

of transient faults that cause a channel to go out of synch. Failures that

cause a loss of synch are naturally more critical because the channel is

potentially lost for the remainder of the flight.

The effectiveness of the modeled memory scrub process is shown in

figure 5.4.3-4. This process corrects the faulty data before they are used

in the system computation. The results imply that the process is not very

effective until its cycle rate approaches the cycle rate of the using

process. This is a reasonable result, but the ability to achieve high

background process cycle rates in a reasonably loaded system is highly

questionable.

272

T

.0

t-

1E-6

1E-7

1E-8

Conditions:
• Mean use time: 5 msec

• Scrub ratio: 8

• Synch: 0.5

• Mean recovery time: 20 msec

M

1E-9 I I I I I
0.125 0.25 0.5 1.0 2.0 4.0

Transient fault rate/permanent fault rate

Figure 5.4.3-2. Transient Ratio Sensitivity

8.0

273

1E-7

1E-8

1E-9 I I I I I I I

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Loss of synch fraction

Figure 5.4.3-3. Loss of Synch Fraction Sensitivity

274

1E-7

1E-8

1E-9 L I I I I I
0.0156 0.0625 0.25 1.00 4.00 16,0 64.0

Memory use rate�scrub rate

Figure 5.4.3-4. Relative Scrub Rate Sensitivity

275

Based on the nominal conditions assumed for the study, figure 5.4.3-5 shows

that the increased likelihood of nearly coincident failures does not

significantly affect overall unreliability until recovery times exceed

about 1 second. (The figure shows the result for soft faults; the data for

loss of synch faults are similar.) It should be noted that these results

assume that the failed channel is not sending bad data on one of the two

networks. The system can tolerate the latter situation for only a few

application cycles.

These parametric results point out the need to characterize the transient

environment and FDIR interaction in the system. Because the transient

environment in flight operation is critical, this characterization will

require inflight measurements on flight-type hardware. The study shows

that certain key parameters dramatically affect system results. These key

parameters values must eventually be measured in the system. With good

environment data, more detailed modeling of the system FDIR processes could

be used to more accurately define the threat. Determination or

verification of the key parameters of the resulting models will be a

difficult task.

5.5 Timing Prediction

In addition to the reliability analysis, a simplified performance estimate

was made for the refined configuration. This estimate allows evaluation of

the success of the changes made to the candidate architecture to improve

growth capability. Ideally, a performance simulation such as that

described in section 4.2 would be conducted for the refined configuration.

However, time did not allow such an effort to be accomplished in this

study.

The timing estimate is dependent on how the application computing and I/0

activity is organized by the designer. Ideally, the application would be

organized to keep the application functions independent. This independence

276

1E-7

35

t,-

1E-8

0.32

Figure 5.4.3-5.

I I I I
0.64 1.28 2.56 5.12 10.2

Mean disable time, sec

Soft Fault Disable Rate Sensitivity

277

eases development and verification effort, especially when the control

functions are separated into less critical and more critical functions.

This independence will, however, cause duplication of some of the

processing when sensors or actuators are shared between functions. For

this reason processes such as sensor redundancy management and computed

state estimates are shared between functions. Preliminary timing estimates

showed that further compromises were needed to meet the heavy loading needs

of the IAPSA II application workload.

Certain ground rules were used to organize the application activity to

minimize the effect of its demanding requirements on the candidate

architecture. First, all the activity with a common execution rate

requirement was grouped together in a rate group. This included both

computing activity and I/O activity. Next the I/O activity for a single

rate group was grouped into a single request containing both the input

commands and output commands for a single cycle. As a result, there was an

end-to-end time delay of approximately one cycle period from sensor read to

actuator write. By comparison, when the I/O activity is organized into

separate input and output requests, the time delay can be less than a cycle

period, but the number of transactions per cycle, and hence I/O loading,

nearly doubles.

A key problem was the limited II0 activity concurrency possible. Once

execution of an IlO request reaches a certain point, it becomes impractical

to suspend it for a higher priority request. Care must therefore be taken

so that a low-priority request does not delay a higher priority request. A

maximum of two IlO requests can be accomplished in each minor frame based

on the preliminary estimates. For this reason, the activity in each minor

frame of application execution was overtly organized so that any requested

IlO activity would complete before the next request by a fast hign-priority

task. This was accomplished by controlling the initial phasing of the

slower rate groups with respect to each other. For example, the medium

rate group was started in minor frame one and repeated every other minor

frame while the slow rate group started in minor frame two and repeated

every fourth minor frame.

278

The organization ground rules used for the candidate system were used for

the refined configuration. Although steps were taken to reduce the

application loading, the demands on the system were still large. Key

timing data for this configuration are shown in table 5.5-1. The changes

in this data compared to the candidate architecture are due to fewer DIUs

and the reallocation of computing and I/0 activity between groups. Some

minor changes were assumed in the command and response frame formats to

slightly reduce bus overhead traffic and data exchange loading. On other

hand, the DIU time required for sensor and actuator interface functions was

increased slightly, to more realistic values. The results of these changes

are shown in table 5.5-2.

Comparison of results with those generated manually for the candidate

architecture shows that the changes were successful. For comparison, the

candidate values were 59 percent for computing and 76 percent for I/O

activity. It should be noted that these timing results are based on the

same simplifying assumptions used in the candidate system estimate. Key

assumptions are: (1) no chain completion delay, (2) slower rate processes

can be evenly split into independent separate processes, and (3) growth

capability measures how much the activity can expand uniformly before

timing constraints are violated. Assumption 1 ensures that there is no

time wasted between completion of the I/O activity on the network and the

start of chain postprocessing in the IOP. Assumption 2 ignores the

application-specific problems inherent in dividing up an application

process.

Experience with the DENET simulation showed that the task switching

overhead resulted in a big decrease in growth capability. The timing

estimate produced previously was therefore adjusted in a simple way for the

resulting overhead if the system utilization were increased to nearly 100

percent. This included an estimate of the effect of the task switches in

the CP and the IOP that would occur in a system that was nearly fully

loaded. The results shown in parentheses in table 5.5-2 were obtained when

a fixed time of 0.3 milliseconds was allowed for this task switching.

279

Table 5.5- I. Refined Configuration 77ming Data

Group Rate, Hz

100.0
50.0
12.5

100.0
50.0
25.0

No. of
transactions

6
6
w

4
2
4

Computing time,

p.sec

99O
4,7931

267

1,050
94

9,687 2

Organization ground rules like reference configuration

1
Manual control fully active

2 Trajectory following active

28O

6.0 SN£LL-SC&LE SYSTENTEST_

This section outlines the objectives and presents experiment definitions

for the small-scale system testing effort. The small-scale system embodies

key features of the IAPSA II design that will be evaluated In a limited

experimentation effort. The limited effort will explore a set of critical

aspects of the IAPSA II reference configuration architecture.

The small-scale system consists of a triple-channel FTP interfacing with a

local I/O network made up of two subnetworks. Experimental data will be

obtained for two purposes. First, certain performance estimates obtained

during the detailed design effort will be verified. Performance simulation

results will be directly compared with applicable measurements made on the

small-scale system. Second, certain timing characteristics critical to

successful operation in normal and faulted situations will be measured

experimentally. A limitation of this small-scale system, of course, is

that system level interactions (e.g., communication between the flight

control group and the engine groups) cannot be tested.

The small-scale system effort is feasible because of the availability of

fault-tolerant processors (FTP), network nodes, and interconnecting links

in the hardware area as well as system services packages in the software

area. A goal of this effort Is to ensure that validation issues defined in

the design/validation concept report and uncovered during the detailed

design effort are evaluated fully.

The rest of this section contains a discussion of the small-scale system

testing objectives, followed by a definition of experiments. The test

configurations are described along with the test control strategy. The

section concludes with a description of the data collection and analysis

approach.

PRECEDING PAGE BLANK NOT FILMED

283

6.1 Testing Objectives

The general objective of this testing is to characterize the timing

performance of the small-scale system under normal and faulted conditions.

The resulting performance measurements, together with low-level time

elements measured by the building block developer, will allow evaluation of

the performance capability of the IAPSA II reference configuration.

Application computing and I/0 activity workload simulation is used to

evaluate the small-scale system. Preliminary workload estimates developed

during the performance modeling effort are used in conjunction with the

selected sequencing and control mechanisms to define a suitable application

workload simulation for the small-scale system.

The simulated workload approach requires only a representative test system

I/0 environment. This means that the test facility need not perform a

high-fidelity aircraft or engine simulation to support the experiments

envisioned for the small-scale system. This greatly reduces the test

facility requirements.

The experimental objectives fall into two major categories. The first

category covers measurements dealing with the performance of key system

services operations; the second category measures the overall performance

of the application. The detailed objectives of the experiments are

presented in the following subsections.

6.1.1 System Timing Characterization - Normal Conditions

The timing characteristics of the small-scale system will be measured while

it executes the defined application workload. The application workload

corresponding to the flight control configuration of the IAPSA II reference

configuration is used to characterize key system timing behavior.

Input/Output Request Timing. The time needed to execute the application

I/O activity is a key component of a control cycle. The performance model

estimates may have been optimistic because they were based on operation

284

near the hardware limit. The small-scale system measurements will provide a

more realistic end-to-end time for this activity. One measurement will

determine the total time required to perform the I/O activity. Time is

measured from the beginning of the system call that starts the I/O activity

until the data is available. This measures all intervening system overhead

processing time.

Another set of measurements will capture the system overhead time needed to

transfer output data in preparation for an I/O request or to transfer input

data obtained as a result of an I/O request. These timing elements were

not included in the performance model. Time is measured from the beginning

of the system calls that starts the data transfer until the system function

is complete and the data is available. The amount of data transferred by

these calls will correspond to the reference configuration flight control

I/O traffic.

Control Cycle Overhead. The total end-to-end system processing time needed

to support the cyclic application execution will be measured. The

measurement will be made in a controlled execution environment to determine

allowable frame rates for slow-time testing. The key service operations

are processing of I/O requests, scheduling and dispatch actions, and fast

FDIR processing. The I/O request time components discussed previously are

contained in this time. I/O processing will be measured in two situations:

(1) when the application does no detailed error checking and (2) when the

application checks the error status of every transaction.

Laboratory Environment Errors. The objective is to characterize the

small-scale system testing environment in terms of its potential for

naturally occurring errors. If the background environment causes errors in

data transferred or voted via the data exchange, system FDIR actions will

result. Similarly, naturally occurring errors due to noise, and so forth,

in data transferred over the I/O network will cause I/O network manager

actions. Unless errors of both types are very rare, they will interfere

with small-scale system testing. These measurements will characterize only

the normal execution environment in the laboratory. The critical issue of

naturally occurring errors or transients in the flight environment can only

be addressed by flight testing.

285

6.1.2 System Timin E Characterization - Fault Conditions

Input/Output Network Faults. The time to recover from a fault on the I/0

network will be measured from fault insertion until the network is back in

service. While the network is being repaired, the application does not

have access to half of the reference configuration sensors and actuators.

In addition to the passive link failures run during the simulation model

experiments, active link failures and active and passive node failures will

be investigated. In addition, the AIPS network repair strategy has been

further defined since the simulation experiments were defined. As a

result, the small-scale system will incorporate a sophisticated repair

strateR_ that combines some of the aspects of the strategies modeled in the

simulation experiments. The network growth time predicted by the

performance model will be compared to the small-scale system results

allowing for improvements due to the more sophisticated strategy.

Fault-Tolerant Processor Faults. The recovery time from FTP faults is

measured from fault insertion to reconfiguration completion. Rapid

reconfiguration is important for two reasons. First, an FTP is vulnerable

to a nearly coincident fault on another channel during an FTP channel

failure-recovery period. In this situation, a failure that would otherwise

result in a fully operational system leads to system failure. This special

vulnerability to subsequent faults disappears after reconfiguration.

Second, certain pathological channel failures can cause erroneous data to

be sent over a network. In the IAPSA II design, the result is that all

actuators will "freeze" near the last commanded position. It is therefore

important for the FDIR to disable a faulty channel's outputs as soon as

possible. A small set of FTP failures will be used to exercise this

process.

6.1.3 Application Timing Characteristics - Normal Conditions

The key application timing requirements will be assessed using the

small-scale system executing the application workload simulation. The

three normal measurement categories are execution variability, time delay,

and deadline margin.

286

Execution Variability. These execution variability measurements

characterize the frame-to-frame regularity of key computing and I/O

activity events. This will permit evaluation of the regular timing

performance of the system scheduling and dispatch functions and the I/O

system services processes.

Time Delay. Time delay measurements characterize the key application

end-to-end timing performance. The performance of each major application

function is affected by the overall time delay involved in one control

cycle. Times representative of the sensor read and actuator write events

at the device interface unit (DIU) will be recorded for each of the

different application rate groups.

Deadline Margin. The deadline margin data indicate how well the system is

keeping up with the periodic demands of the different application rate

groups. The deadline is the latest time that the activity in one control

cycle can complete and still satisfy the control cycle timing requirement.

The time from the end of control cycle activity in one frame to the start

of control cycle activity in the next frame marking the deadline will be

measured.

6.1.4 Application Timing Characteristics - Input/Output Network Fault

Conditions

The application timing measurements previously described will be made in

the simulated failure experiments to see if the additional demands made on

the system due to fault recovery adversely affect the continued application

execution. The I/O network faults to be simulated in this testing are

defined in section 6.4. The number of control cycles that the application

processes must operate without access to the full complement of sensors and

actuators will be recorded. Each application frame without full data due

to repair actions will be marked.

Transaction Selection (Optional). This significant action eliminates any

vulnerability to the temporary exhaustion system failure condition.

Temporary exhaustion described in section 3 was the critical failure

287

condition for the reference configuration. The refined configuration

strategy for dealing with this threat requires the application to first

determine that this special action is needed. Next, the application must

make the appropriate transaction select and transaction deselect system

calls to eliminate the vulnerability. The time from the simulated fault

until execution of the reconfigured chain is the important parameter in

this action.

6.1.5 Application Timing Characteristics - Fault-Tolerant Processor

Fault Conditions

The application timing measurements described in section 6.1.3 will be made

in the simulated failure experiments to see if the demands made on the

system to handle faults adversely affect the continued application

execution. In addition, the system is vulnerable if a faulty channel can

send incorrect output commands over an I/O network. This measurement will

determine how long it takes the system to disable a faulty channel's

outputs. This will verify a key assumption that a bad channel is disabled

and communication responsibility is transferred to a good channel within a

few application cycles.

6.2 Experiment Descriptions

This section contains general descriptions of the small-scale system

experiments. It should be noted that the experiment numbering begins with

I0 to differentiate from the DENET experiments. Two different application

organization options will be used in the testing; on-demand I/0 and

periodic I/O. These options refer to how the application control cycle is

scheduled and organized. The periodic option starts the I/O requests each

period using the IO service timing function in the IOP. The application

computing executes when the I/O request completion is signalled.

The on-demand option starts the application computing cycles using the

system services timing function in the CP. Input/output requests are

executed when explicitly directed at the completion of the application

computing activity. It should be noted that this organization is different

288

from the on-demand option modeled in the simulation because the I/O

activity occurs at the end of the computing instead of at the beginning.

Additionally, there is only one cross processor (IOP - CP) event per

control cycle instead of the two in the simulation model version. The

simulation version effectively minimized the I/O activity jitter at the

expense of additional overhead processing.

Experiment 10: Fault-Tolerant Processor Execution Environment

Characterization. A special version of the pseudoapplication program will

be run in a controlled environment to measure the time required by some key

operations. A single application task will be executing in the FTP with no

I/0 activity. The key process to be timed rill be executed a large number

of times. Processes to be measured in this experiment include (I) the read

and assign real-time clock value, (2) the background self-test FDIR, and

(3) the application workload loop. The first measurement will characterize

the overall impact o£ making timing measurements from the psuedoappllcation

program. The second set of measurements vlll enable an assessment of the

effectiveness of the background FDIR process. This is because the

effectiveness is dependent on how often it executes. The final set of

measurements are needed to tailor the timing needs of the psuedoapplication

so that the desired timing load can be simulated in the small-scale system.

Experiment Ii: System Overhead Characterization. A special version of the

pseudoapplication program rill be used to time the end-to-end system

overhead requirements. The total overhead for each applicatlon rate group

rill be stimulated in a controlled execution environment. A special test

executive will control the execution of each application rate group

activity to produce a sequence identical to that of an ideal major frame

resulting from an on-demand scenario.

The special executive will wait for the I/O request completion flag to

measure the time needed to complete the I/O activity before scheduling the

next rate group. The experiment will be run for a large number of major

frames to ensure adequate overhead assessment. The test will be run with

and without error checking of each application transaction to determine the

289

limits of its effect. The sequence will be run with and without the

tlme-critical FDIR process to measure the additional overhead.

Experiment C/P lOP FDIR Phasing Investigation. In this experiment, a

limited set of computational processor (CP) and I/0 processor (IOP) FDIR

phasing combinations will be run to assess the effect on key application

timing parameters. The set of combinations will be run for each

application scheduling option. This will be an all-up run with full

operation of all system service processes and pseudoapplication processes

except for the background FDIR self-test. Cyclic execution of application

rate groups will be controlled by the defined system timing functions. The

computing workload and the application group execution rates will be

adjusted to produce a slow-time scenario for this test.

Experiment 13: Input/Output Network Faults. In this experiment, link

faults will be inserted to simulate certain network element faults. After

a few major frames of normal operation, a fault will be inserted at the

desired network location at a predefined point in the test. Traffic on the

good network and the faulty network will be monitored to evaluate the

effect of the network repair activity. The FTP system services logs will

be consulted to correlate the time of failure detection and return of the

network to service. A passive failure mode and a special active failure

mode will be simulated for both links and network nodes.

Experiment 14: Fault-Tolerant Processor Faults. At a predefined point in

the test, the pseudoapplication program will perform special operations to

cause faulty behavior in one FTF chan_el. Faults that result in output

miscompares and faults that cause a channel to lose synchronization will be

simulated. Network traffic and pseudoapplication task timing will be

monitored for anomalous behavior during the failure recovery. Faults will

be simulated in a channel driving a network and in a channel not driving a

network. The system services logs will be consulted to correlate the time

of failure detection and recovery to duplex operation. Power failure

faults for a channel will be simulated using hardware methods and will be

accomplished in a manner similar to the I/0 network faults.

290

Experiment 15: Transaction Selection (Optional). This experiment will

simulate a transaction selection scenario. It will cover the end-to-end

application process from detection of the problem to reconfiguration of the

application chains. A special version of the psuedoapplication program

will contain code for the communications check and the fault-reaction

process that selects and deselects transactions. This experiment wlll also

use special chain definitions with an additional transaction that will be

initially deselected. A fault will be simulated in the appropriate DIU

link and the time of first execution of the reconfigured chains noted.

After reconfiguration, the chains on one network will execute with one less

transaction due to deselection, while the chains on the other network will

run one extra transaction due to selection.

The detailed experiment needs will be defined in detailed test plans (DTP)

before running any experiments. These DTPs will guide the actual execution

of the experiments on the test facility. The DTP must describe the test

sequence of events, the data configuration for the experiment, and the

schedule for data acquisition by the test facility. Data acquisition

includes the identification of parameters to be monitored and the

applicable frequency and simulation time spans for data collection.

6.3 gxperi.mnt Test Configurations

The test configuration for the small-scale system experiments is shown in

figure 6.3-1. This section describes the hardware and software elements of

the test configuration organized into two categories, the system under test

(SUT) and the test facility. The system-under-test elements represent

components that ultimately are part of the flight system. Test facility

elements are the hardware and software elements that enable the SUT

operation to be simulated in the laboratory and that provide the

development and analysis capabilities necessary to support testing.

6.3.1 System Under Test Elements

Fault-Tolerant Processor. The FTP is an AIPS triplex general purpose

computer (GPC). The FTP version used in the small-scale system testing

291

Simulation host

VMEOTP

VME simulation

computer

O'OOT I°°°I'o'uoTP11
VME DIU simulators

, I Fault inserti°n I

II.
Failure simulation _inks

11

Network and synchro- I

nization adaptem_,

I
Test control links

Ethernet

I gVAX ex_riment_---host

VAX station I
development

host

:;lootlinks

AIPS I/O networks

FTPOTP

FTP

System under test Test facility

Figure 6.3-1. Experiment Test Configuration

292

uses two Motorola 68010 microprocessors running at 8 MHz. One is used as

an IOP while the other is used as a CP. The CP is primarily used for

application software execution. Each FTP channel has a shared bus, a data

exchange interface, an interstage, and IlO network interface hardware.

Operation of the FTP during experiment activities is controlled via the FTP

test port that interfaces with the _icroVAX experiment host.

Fault-Tolerant Processor Operational Test Program. The fault-tolerant

processor test program (FTPOTP) consists of two major elements, the

pseudoapplication software and the AIPS system software. The

pseudoapplicatlon software has the responsibility for providing a

computational and I/O activity workload simulation, collecting data in the

FTP execution environment, and implementing the FTP test control function

during the experiment runs. The system services building block elements

are linked with the pseudoapplication elements to form the loadable FTPOTP.

Advanced Information Processing System Input/Output Network. Two advanced

information processing system (AIPS) serial I/O networks are used to

provide communications between an FTP and the sensors and actuators. The

network is composed of prototype reconflgurable nodes and pairs of data

links that support full duplex communications. The communications elements

uses a modified BDLC protocol. The small scale system is configured to

model the flight control group of the IAPSA II reference configuration.

Network i is fully configured with all the nodes and simulated DIUs that

would be used in the reference flight control configuration. All I/O

network faults will be simulated on Network I. Network 2 is simulated with

two nodes interfacing with a full complement of DIU simulators. During

operation, it behaves just like a fully configured network supporting the

full I/0 traffic load.

6.3.2 Test Facility Elements

The test facility must be able to establish the test conditions in the

system-under-test elements to provide a representative I/O environment to

the small-scale system during exp,_.rimen_ runs and to collect experiment

data from the system during the tests. In addition to these runtlme

293

activities, the test facility must support downloading of software into the

system under test, debugging of the experimental setup, and analysis of the

experimental data.

Simulation Host. The simulation host is a VMEbus-based system containing a

16.7 MHz 68020 CPU (referred to as the VME simulation computer), 16 MB of

RAM for dat_l storage, several intelligent serial I/O interface boards

(referred to as VME DIU simulators), custom I/O network interface boards, a

parallel I/O interface board for communications, and a fault insertion

panel. During experiment runs, the simulation host is responsible for: (1)

maintaining an experiment time reference, (2) providing a real-time DIU

simulation capability, (3) controlling I/O network fault injection

hardware, and (4) collecting data from I/O network activity.

VME Operational Test Progral. A VME operational test program (VMWOTP)

running on the VME simulation computer handles the test setup,

initialization, test control, and runtime data collection functions for the

simulation host. The VMEOTP fault control function commands the state of

the I/O network fault insertion panel during experiment runs in accordance

with a predefined fault script. This capability allows a wide range of

network faults to be simulated. In cooperation with the DIU simulators, it

manages the temporary storage of the I/O network activity data collected

during experiment runs. Finally, in its test control function role, it

coordinates the start of the experiment run with the FTP and the orderly

termination of the experiment with _:he other simulation host elements.

294

Device Interface Unit Simulator Operational Test Program. In an actual

system, DIUs connected to the I/O network provide an interface between

application software executing in an FTP and the aircraft sensors and

actuators. The small-scale system uses DIU simulators to support the I/O

network transaction load representative of an actual system. The

transactions contain dummy data u_;ed for test purposes and do not have

values representative of actual se_,sors or actuators. The DIU simulator

operational test program (DIUOTP) :_s responsible for initializing the DIU

simulator hardware, checking the command frames received, collecting data

about each command frame, generating any necessary response frames, and

starting and stopping DIU operation during experiments.

MieroVAX Rxperimt Host. The HicroVAX experiment host computer controls

the FTP using the VAX resident FTP interface program (VRIP) and the FTP

resident AIPSDEBUG program. During experiment operations, the experiment

host is responsible for (I) download of the FTP operational test program

before experiment runs, (2) setup of the run peculiar data configuration in

the FTP before experiment runs, and (3) start of the experiment run. The

experiment host is also responsible for upload and temporary storage of the

raw data collected in the simulation host and the FTP after experiment run

termination.

The experiment host is also used to develop, compile, and link the FTP

operational test program. The host contains the AIPS system services

software library. When the pseudoappllcation software is ready, this

machine compiles and links the loadable FTP operational test program. The

microvax experiment host converts the raw experiment data from the VME

simulation host and the FTP to a common data analysis format. It supports

data analysis and the archiving of processed experiment data. The MicroVAX

II stores the VMEOTP and the DIUOTPs and downloads them to the VME

simulation computer and the VME DIU simulators before running the

experiments.

V&Xstatlon Development Host. The VAgstatlon 2000 is used to develop the

software and firmware targeted for the VME simulation host elements. This

includes the VMEOTP and the DIUOTPS. The software elements are transferred

to the experiment host for downloading into the simulation computer.

Laboratory Communication Links (Non-Runtime)

An Ethernet link provides a connection between the MicroVAX experiment host

and the VAXstation development host. The link will be used to transfer

developed VME operational test programs during software development.

A custom link is used to connect the FTP test port and the test port

controller in the MicroVAX experiment host. This link is used to download

the FTP operational test program before experiment runs, to start the

295

operational test program in the FTP, and to upload raw experiment data

after experiment runs.

A custom parallel interface connects the experiment host and the simulation

host. It is used to download programs to the simulation host and to upload

raw data after experiment runs.

Test Control Links. Three discrete links connect the FTP and the

simulation host. Two links are used to coordinate the two main simulation

elements at the start of the experiment run. The links also allow the time

references in the simulation host to be synchronized at the start of the

experiment in the FTP. A test clock link is used to distribute a common

time reference between the FTP and the simulation host elements.

Experiment Peculiar Configurations. Most of the significant differences

between the element configurations used for each experiment are in the

operational test programs in the FTP and the VMEbus simulation computer.

These differences are due to the different fault simulation needs, data

collection needs, and simulated computing workload needs between the

experiments. An exception is that only the FTP and the MicroVAX experiment

host hardware elements are needed in experiment I0. The hardware

configuration for the rest of the experiments is very similar.

6.4 Fault Insertion

The performance measurement under fault conditions is a key part of the

small-scale system testing. Active and passive failures will be simulated

in the following I/O network elements: (i) network links, (2) network

nodes, (3) root links, and (4) DIU links. Passive faults will be simulated

by a stuck logic 0 signal on the links while active faults will be

simulated by a stuck logic 1 signal on the link. A node failure will be

simulated by inserting the respective fault on all active node links

simultaneously. Faults will also be simulated on the FTP. Special code in

the FTPOTP will be used to force a CP channel out of sync or an lOP channel

out of sync. Another version will be used to cause CP channel output

disagreement. A final FTP channel failure will be loss of channel power.

296

6.4.1 General

The key elements involved in fault insertion are the I/O network link fault

insertion panel, the VME operational test program, and the FTP operational

test program. Patch cables to the I/O network link fault insertion panel

provide the capability of inserting stuck logic 0 or stuck logic 1 signals

into an I/O network link. The simulation host controls the introduction of

I/0 network faults via the I/O network fault insertion panel. The VME

operational test program commands the fault insertion panel to initiate or

terminate fault behavior.

FTP fault behavior is simulated in the FTP under control of the FTP

operational test program. At the appropriate time in an experiment,

special failure simulation code is used to cause the appropriate fault

reaction from the AIPS FDIR process.

6.4.2 Experiment-Peculiar Strategy

Input/Output Network Faults. To set up an experiment 13 run, the specific

links to be failed must be physically routed through the I/O network fault

insertion panel hardware. The test system hardware and software must be

set up in accordance with the fault script defined in the detailed test

plan. This fault script defines the specific fault occurrence time, fault

type, and fault insertion channel configuration used for the test.

Before an experiment 13 run, a fault setup subprogram running on the VME

CPU in the simulation host sets up the fault insertion hardware. At the

appropriate time during the experiment start, the fault insertion

subprogram sends the appropriate control word to the I/O network fault

insertion panel hardware. At the conclusion of the experiment run, the

fault insertion panel is reset to its unfaulted state.

Fault-Tolerant Processor Faults. To set up most experiment 14 runs, a

specific fault scenario must be defined to the FTP operational test program

as defined in the fault script. The pseudoapplication program will

incorporate a high priority one-shot task (higher than all tasks except

897

298

FDIR) that will be scheduled to execute at the defined fault occurrence

time. The fault control task will execute special code designed to cause

the specific fault behavior to occur. This method will be used for the

loss of synchronization and output disagreement faults. The power fail

fault will be accomplished using special hardware connected to the fault

insertion panel. Power fail simulations will be setup and controlled in a

similar manner to the I/O network faults previously described.

6.5 Test Control Strategy

The experiment run is coordinated via two test control discretes used to

synchronize the experiment in the FTP and the simulation host. While

either machine is being set up for a run, the sync discretes are set to the

STOP state. When the simulation host has been set up for an experiment and

the run time software has been started, the VME sync discrete is set to the

RUN state. The simulation host then waits for the FTP test control

discrete to change to the RUN state.

When all associated equipment is ready for experiment operation, the FTP

operational test program is started via the VRIP interface. On completion

of initialization, the FTP samples the VME sync discrete. If the input

line is in the RUN state, the test control function in the FTPOTP schedules

the application tasks and starts cyclic operation. At the appropriate

time, it changes the FTP sync discrete to the RUN state.

All time reference clocks in the simulation host begin counting when the

FTP sync discrete goes to the RUN state. On completion of an experiment

run, the FTP sets the FTP sync discrete to STOP. The simulation host

responds by terminating data collection, recording experiment ending time

and changing the state of the VME sync discrete to STOP. Both computers

are then free to transfer experiment raw data and set up for the next

experiment.

The real-time clock in the FTP, the VME simulation computer time reference

clock, and the VME DIU simulator time-reference clocks are synchronized at

the start of an experiment. A common test clock with a 4.125 microsecond

period drives all of the time reference elements in the system.

6.6 Data Collection and Analysis

The DIU simulator collects data about the I/0 network transactions in real

time. The raw data consists of information about all command frames sent

by the FTP and processed by each DIU simulator. The information includes

command frame error status information such as HDLC error, sumcheck error,

etc. In addition to the error status information, the collected

information includes an identifier, transmitted frame count, and the time

of DIU simulator processing.

Data regarding FTP operation are collected during experiment runs by the

pseudoapplicatlon program and stored in CP and IOP local memory. After run

completion, data are extracted from the FTP using the FTP test port

interface and VRIP/AIPSDEBUG software and stored in raw data files on the

MicroVAX experiment host. Data collected by the pseudoapplicatlon includes

the real time clock value at significant application events, indicators for

certain I/O system and FTP errors, and the background program workload

count at the beginning of each minor frame.

In addition to the data visible to the pseudoapplication, system services

data are necessary to fully document some experiment runs. This

information is recorded by system services in special logs that can be

accessed via CRTs connected directly to the FTP coprocessors. The

significant data from these logs are manually recorded in the experiment

log after each experiment run.

The raw data generated after each experiment run will be transferred to the

MicroVAX experiment host for analysis. The raw data is converted to a

common format before use by the data analysis program. The FTP data

recorded in the experiment log is entered manually for use by the data

analysis program.

6.6.1 Standard Statistical Data

The data analysis program has a statistics package that generates a

standard set of statistics for certain data sets. The standard set of

299

statistics includes the mean, the standard deviation, and the extreme

values found in the data set. The package also creates a histogram to

display the data set values. The histogram range and number of intervals is

set by default based on the extreme values in the data set and the number

of data samples. The user can also manually set the histogram display

parameters.

For all of the following statistical data requirements, the number of data

points included in the statistical summary will be listed. Data samples

associated with any abnormal frames are not included in the statistical

summary. These abnormal frame conditions are defined in the event summary

description.

Execution Variability Data. The statistical data in this category

indicates the frame-to-frame variability of the application execution.

Execution variability statistics are based on the frame relative time of a

specific application event. The frame relative time of each occurrence of

the event is based on the ideal frame start time for each application

frame. This is determined based on the ideal start time of the very first

frame and the frame repetition period.

Duration Data. Statistics in this category are produced on data derived

from the raw application event information. The data are based on the

difference in time of occurrence between two application events. Two

examples are time delay and deadline margin.

Time delay data are indicative of the sensor-to-actuator time delay for

each application update rate. A transaction used by a specific rate group

is used as representative of the sensor read and actuator write events.

The difference between the transaction time in one frame and its occurrence

in the subsequent frame is recorded as the time delay value.

Standard statistics data are generated for the time delay data sets. The

time delay values for abnormal frames, such as missed I/O update or frame

overrun situations, are not used in the subsequent statistical analysis.

Similarly, if there is an extraordinary case of long time delay because of

300

a missing frame, the value is not used. The number of frames for which no

time delay value was recorded due to exceptional conditions should be

listed in the statistics output.

Deadline margin data indicates how close the system is to not satisfying

the regular update requirements of the application processes. The

processed data is derived based on the time the final activity completes in

one frame and the deadline for that activity occurs in the subsequent

frame. The final activity and the deadline are different depending on the

selected scheduling mechanism.

For periodic I/O configurations, the deadline event occurs near the start

of the IlO request processing in the IOP when the output data buffer is

accessed. The final activity in a control cycle is the updating of the

output data for the next I/O cycle. The final activity completes just

before the end of the application computing.

For on-demand I/O configurations, the deadline is the reading of the input

data from the preceding I/O cycle. This takes place just after the

beginning of the the computing activity for a control cycle. The final

activity in the frame is the completion of the update of the input data by

the I/O request processing.

A problem for deadline margin measurements in the small-scale system is

that one of the events cannot be recorded directly unless the system

services software is instrumented. This was not done for these

experiments. Therefore, another event closely related to the actual

deadline or final activity is used. This will introduce a bias in the

processed deadline margin values.

The statistical analysis is performed on the computed deadline margin data

sets. The deadline margin values for abnormal frames such as those with

missed I/O updates or frame overrun cases will not be used in the

subsequent statistical analysis. The number of data samples rejected due

to abnormal frames will be shown in the statistics output.

301

Time Reserve. Time reserve data will be produced for the CP. These data

are indicative of the demand placed on the system by the application and

the time critical system services (fast FDIR). The time reserve

information for experiment 12 characterizes the steady-state demands on the

system. For experiments 13 and 14, the data illustrates any change in the

demand on the system during the fault recovery period.

The time reserve data for one frame is determined by subtracting the

background counter value in a frame from its value in the subsequent frame.

The background count is incremented during the idle or reserve time when

there is no other processing to be run. The time reserve data sets will be

divided into four groups corresponding to the specific minor frame of the

major frame cycle (A,B,C, or D). Standard statistics are generated on each

group.

Fault Recovery. The fault recovery information indicates how long the

system takes to repair a fault for experiment 13 and 14 runs. Some of the

raw data is recorded from CRT displays of the system services log and so

must be manually entered for the data analysis program. The fault recovery

time is based on the fault occurrence time and a corresponding recovery

complete time for each run. The fault recovery times for all of the runs

having the same configuration and fault type form a data set for which

statistics are generated.

6.6.2 Event Summary Data

In addition to statistical data, the analysis program determines and

presents event summary data for the experiment run. The summary

information is based on data collected during each run as well as detailed

information about certain situations occurring during the runs being

evaluated. The summary is organized by run in the case of multiple-run

evaluation, with the events in each run listed in chronological order.

When an event is listed, associated data recorded with the event are

presented.

302

The event summary for each run includes a run start entry and a run

termination entry. A brief description of the other significant situations

is presented in the following paragraphs.

An entry for the FTP fault insertion event is included for all experiment

13 runs. This entry will show all data associated with the specific fault

condition. Similarly, there will be an entry for the VME fault insertion

event for all experiment 14 runs. All data associated with the specific

fault condition will be presented.

Experiment 13 and 14 runs will also contain entries for the end fault

repair event. These entries will show the time that the system services

completed the reconfiguration actions taken to repair the fault.

There will be entries for each application frame that experiences

communication errors during I/O activity. These errors include (I) chain

error, (2) all transactions bad, (3) chain not complete, (4) chain did not

execute, or (5) network out of service. The entry will show the time,

frame count, and application rate group identifier.

Any command frame received at a DIU with errors will appear in the summary.

The command fame identifier, time, frame count, and error code will be

presented.

The partial data summary shows the number of frames in which communications

with the complete set of DIUs is interrupted because a network is out of

service. The application partial data summary will show for each run, by

application rate, the number of frames in which the application used a

partial set of sensor and actuator data because a network was taken out of

service.

The abnormal DIU data summary indicates when the DIU did not receive the

expected periodic update from the application process. This occurs when a

DIU command frame is repeated or skipped. For each DIU frame ID, the

number of occurrences of repeated command frames and skipped command frames

will be reported for each run.

3O3

Abnormal Frames. The abnormal frame entries document the occurrence of an

incorrect application cycle. The three specific situations are missed I/O

update, computing overrun, or IOR overrun.

Missed I/O updates occur when the I/O activity part of the control cycle

and the computing part of the control cycle do not keep up with each other.

In this situation, the deadline for the final activity in the frame is not

met. In the on-demand I/O case, the IO service activity does not finish

updating the input data buffer before the time it is read by the subsequent

frame computing activity. In the periodic I/O case, the application

computing does not complete updating the output data buffer before the

subsequent frame I/0 request.

A computing overrun refers to the situation in which the application CP

processing for one frame is scheduled to start while the application

process for the previous frame is still active. The system ignores the new

request in this situation.

An IOR overrun occurs when the I/0 system is unable to process a submitted

I/O request. In this case, the I/O activity for a new frame is scheduled

to occur before the I/O activity has completed for the previous frame.

Special system calls are used to collect data about the occurrence of

either type of overrun.

The analysis output data is determined based on the raw data from the

experiment runs. Data in the execution variability and duration categories

are based on a subset of the possible raw data produced. For experiment

12, 13, and 14, the analysis output data will be based on raw data from the

start of the third application major frame through the end of the run.

304

7.0 CONCLUSIONS

During the detailed design effort for the IAPSA II contract, a candidate

architecture design based on AIPS fault-tolerant system building blocks was

evaluated for its ability to meet the demanding performance and reliability

requirements of a flight-critical system. As a result of the preliminary

evaluations some refinements were made to the candidate architecture. The

refined configuration was evaluated for reliability and performance and a

set of experiments defined for testing critical performance aspects with a

small-scale system. This modeling effort provided several important

results described below.

The major result was that several weaknesses in the candidate architecture

became apparent as a result of using the prevalldatlon methodology. These

shortcomings were not evident in the initial performance and reliability

calculations. This is important because such concept weaknesses are often

not uncovered until late in the system life cycle, for example at hardware

and software integration. The IAPSA II effort shows that it is very

important to perform detailed evaluation of concepts based on

specifications before committing a project to a hardware and software build

phase.

The candidate architecture was unable to meet either the reliability or

performance requirements. Reliability was affected by uncovered element

failures (a common finding in critical systems), rare mechanical failure

modes, and an interaction of preexisting sensor failures with I/O network

repair activity. As a consequence, there were several two-failure

situations that resulted in loss of safety, and one-failure situations

resulting in loss of full mission capability.

The performance simulation showed that part of the candidate system was

overloaded and did not possess the needed growth capability. In fact, the

loading was such that special coordination was needed between the

application tasks and the time-critical system tasks to allow the

application workload to complete in the allowable time. Alternative

305

organizations of the workload were evaluated and only the most efficient

could be fit into the allowable timeframe. However, even the optimum

organization had inadequate growth capability.

Changes were made to the candidate architecture to better balance the

workload, to improve the level of failure protection, and to reduce the

number of communication elements. Although the refined system was shown to

meet the reliability requirements, several concerns became evident during

the evaluation. Our modeling approach was based on separate models

reflecting the success of the key system functions. Modeling the

dependency of the system functions on the central elements such as

communication devices and electrical and hydraulic power distribution was

difficult. It was easy to miss the implications of system interconnection

alternatives, especially when the central elements also had dependency

relationships. This was very true in the special power connection

reliability concerns associated with the refined configuration mesh network

option.

A solution that would make these central dependencies explicit in a

large-system-level model still seems unattractive. A method is needed to

more formally organize the combining of the separate section model results.

The techniques used in the refined configuration analysis were more

effective and easier to justify than those used during the candidate

evaluation. However, the step of estimating error due to model truncation

when a problem is split into submodels needs further development.

A sensitivity study of the susceptibility of the system to transient faults

pointed out an area of concern. Because of the complex redundancy

management strategies, the handling of transients is always challenging for

flight critical systems. One problem is characterization of the transient

threat. Solid operational data on the likelihood and duration of transients

is scarce. In our limited study, the major concern was transients that can

cause a channel to go out of synchronization. Because of the heavy

application workload environment, there was not enough time for the system

to bring a channel back into synchronization and align its memory with the

remaining "good" channels. Therefore a transient that causes loss of

306

synchronization has the same effect as a permanent failure. If the

transient fault rate is significant in operational circumstances, then

these failures will contribute significantly to system failure.

There were many situations in the study in which performance and

reliability were closely interrelated. The above resynchronization

situation is one example. Another was the strategy to eliminate

vulnerability to "temporary exhaustion" failures. Due to the heavy

application I/O workload, strategies of sending sensor and actuator data

redundantly over both networks were impractical.

The use of a discrete event simulation tool, like DENET, is new in the

analysis of a flight control system. Such tools appear very promising for

determining critical performance requirements, but much application work is

needed to define practical and effective modeling techniques. However,

attempting to develop complex system configurations with multiple

processing sites and intensive I/O needs without using such tools to

uncover bottlenecks seems foolhardy based on our experience.

The rebalancing of appllcatlon workload improved the overload situation

significantly compared to the candidate system. However, the preliminary

simulation results experiments indicates that the improvement is not

enough. Using a simplified adjustment for task overhead processing was

enough to show that the growth factor for the refined configuration is

below requirements. To make matters worse, the proof-of-concept testing

conducted before the small-scale system testing shows that the real system

is not operating anywhere near the hardware limit. Because our performance

models were based on very efficient operation, the small-scale system

testing is likely to show that performance needs cannot be met with the

current hardware and software design.

The AIPS building block hardware design is much more mature than the

software design; the functionality assigned to the system services software

is overwhelming. Validation of this complex software, which includes some

nondeterministic behavior, will be extremely challenging. Efficiency

considerations have only recently been addressed in the software

307

development effort. Early in the IAPSA II design, performance calculations

were based on the original AIPS system performance goals as expressed in

the system specification. Bowever, since these goals were not reflected in

the performance requirements for the AIPS building blocks, a building block

redesign will probably be needed.

In our system study, a set of redundant buses provided nearly the same

general reliability as the reconfigurable I/O mesh networks. Because of

the system software complexity associated with the management of the

reconfigurable mesh I/O networks and the needed validation effort, the I/O

mesh network would be eliminated from further consideration at this time.

However, to meet the throughput needs of the application functions, an IC

network between computing sites is essential. The IC network has even more

demanding network management requirements than the I/O networks. The

characteristics of communications over the IC network also generate some

demanding performance needs. These needs and associated potential resource

contention problems were not evaluated in our study.

308

9JC_CBS

lo NASA Contractor Report 178084, "Design and Validation Concept for the

Integrated Airframe/Propulsion Control System Architecture,"

G. C. Cohen, et al., June 1986.

o NASA Technical Memorandum 83553, "A Real-Time Implementation of an

Advanced Sensor Failure Detection, Isolation, and Accommodation

Algorithm," J. C. Delaat and W. C. Merrill, January 1984.

1 AFWAL-TR-86-2084, "Fault Tolerant Electrical Power System, Phase II:

Analysis and Preliminary Design," Boeing Military Airplane Company,

December 1986.

, CSDL-P-1945, "Evaluation Methodologies for an Advanced Information

Processing System," R. S. Schabowsky Jr., et al., August 1984.

o AIAA-88-4409, "Fault Tolerant System Performance Modeling,"

M. J. Strickland and D. L. Palumbo, AIAA/AMS/ASEE Aircraft Design,

Systems and Operations Conference, September 1988.

309

310

APPENDIX A

SELECTED ASSIST MODELS

IAPSA II REFINED CONFIGURATION

(*** Forward Area Model - Safety Criteria - Network Option ***)
(* GroupA *)
(* *)

SPACE = (FWNOD :

FWKEC :

FWDIU:

PITSTK:

PITREC :

ROLSTK:

ROLREC :

YAWPED :

YAWREC:

FTP :

FTPREC :

ROOT :

ELMC :

ONKEC :

NFAIL :

0 .4 I

0 .2,

0 .4,

0 .4,

0 .2,

0 .4,

0 .2,

0 .4,

0..2,

0..4,

0..2,

0..4,

0..4,

0..2,

0..4);

(* FORWARD NODE *)

(* NETWORK RECOVERY INDICATOR *)

(* FORWARD DIU STATE INDICATOR *)

(* PITCH CO_/AND SENSOR *)

(* PITCH SENSOR RECOVERY INDICATOR *)

(* ROLL COI_MAND SENSOR *)

(* ROLL SENSOR RECOVERY INDICATOR *)

(* YAW COMMAND SENSOR *)

(* YAW SENSOR RECOVERY INDICATOR *)

(* FTP CHANNEL STATUS *)

(* FTP CHANNEL RECOVERY IND. *)

(* ROOT LINK STATUS *)

(* ELECTRIC POWER STATE *)

(* OTHER NODES IN A SINGLE NETWORK *)

(* NO. OF FAILED ELEMENTS *)

START = (4, 0, 4, 4, 0, 4, 0, 4, 0, 4, 0, 4, 4, 0, 0);

PRUNEIF NFAIL > 2;

DEATHIF PITREC + FWREC + ONREC > 1 OR ROLREC + FWREC + ONREC > 1 OR

YAWREC + FWREC + ONREC > i;

DEATHIF PITSTK-PITREC < 1 OR KOLSTK-ROLREC < I OR YAWPED-YAWREC < i;

DEATHIF FTP - FTPREC < i;

DEATHIF FTP < 2;

DEATHIF ROOT < 3 AND (PITREC > 0 OR ROLREC > 0 OR

YAWREC > 0 OR FWREC > 0 OR ONREC > 0);

LIST = 2;

TIME = 3.0;

PRUNE = 1.0E-16;

ECHO = 0;

LAMPOS = 10.0E-6;

LAMNOD = 17.0E-6;

LAMDIU = 15.0E-6;

POSMEAN = 3.0E-4;

POSSTD = 1.0E-4;

NWMEAN = 3.0E-4;

NWSTD = i. 0E-4;

(* POSITION SENSOR FAILURE RATE *)

(* NODE FAILURE KATE - CONDITIONED *)

(* DIU FAILURE RATE - CONDITIONED *)

(* RECOVERY TIME MEAN *)

(* RECOVERY TIME STD DEV *)

(* NW RECOVERY TIME MEAN *)

(* NW RECOVERY TIME STD DEV *)

LAMPS = 10.0E-6;

LAMEL = 50.0E-6;

LAMFTP = 200.0E-6;

LAMROOT = 15.0E-6;

FTPMEAN = 5.0E-6;

(* LOCAL POWER SUPPLY RATE - CONDITIONED

(* ELECTRIC POWER CENTER FAILURE RATE

(* FTP CHANNEL FAILURE BATE

(* FTP NETWORK INTERFACE FAILURE RATE

(* FTP RECOVERY TIME MEAN

*)
*)
*)

*)
*)

A-I

FTPSTD = i. 0E-6;

LAMON = 289.0E-6;

(* FTPRECOVERYTIMESTDDEV

(* OTHERNODESONSINGLENWFAIL RATE

*)

*)

(* PITCH COMMAND SENSOR FAILURES AND RECOVERIES *)

IF PITSTK > 0 AND PITREC = 0 AND ROLREC = 0 AND YAWREC = 0

AND FTPREC = 0 AND FWREC = 0 AND ONREC = 0 THEN

IF NFAIL = 0 OR PITSTK = 2 THEN

TRANTO PITSTK = PITSTK-I, PITREC=PITREC+I, NFAIL=NFAIL+I
BY PITSTK*LAMPOS;

ELSE

IF ROOT = 2 THEN (* SINGLE NETWORK SUSCEPTIBILITY *)

TRANTO PITSTK=PITSTK-I, PITREC=PITREC+I, NFAIL=NFAIL+I
BY (2/3)*LAMPOS;

TRANTO PITSTK=PITSTK-I, NFAIL=NFAIL+I

BY ((PITSTK - 2) + 4/3)*LAMPOS;
ELSE

TRANTO PITSTK = PITSTK-I, NFAIL=NFAIL+I

BY PITSTK*LAM_POS;
ENDIF;

ENDIF;

ELSE (* NEARLY COINCIDENT SENSOR-NETWORK *)

IF FWREC > 0 (* SAME NODE SET *)

TRANTO PITSTK = PITSTK-I, PITREC=PITREC+I, NFAIL=NFAIL+I

BY (PITSTK+I)*LAMPOS /2;

IF ONREC > 0 (* OTHER NODES *)

TRANTO PITSTK = PITSTK-I, PITREC=PITREC+I, NFAIL=NFAIL+I

BY PITSTK*LAMPOS /2;

IF PITREC > 0 THEN (* RECOVERY OR SYSTEM LOSS *)

TRANTO PITKEC = 0 BY < POSMEAN, POSSTD >;

TRANTO PITSTK = PITSTK-I, PITREC=PITREC+I, NFAIL=NFAIL+I
BY PITSTK*LAMPOS;

ENDIF;

ENDIF;

A-2

(* ROLL COMMAND SENSOR FAILURES AND RECOVERIES *)

IF ROLSTK > 0 AND PITREC = 0 AND ROLREC = 0 AND YAWREC = 0

AND FTPREC = 0 AND FWREC = 0 AND ONREC = 0 THEN

IF NFAIL = 0 OR ROLSTK = 2 THEN

TRANTO ROLSTK = ROLSTK-I, ROLREC=ROLREC+I, NFAIL=NFAIL+I
BY ROLSTK*LAMPOS;

ELSE

IF ROOT = 2 THEN

(* SINGLE NETWORK SUSCEPTIBILITY *)

TRANTO ROLSTK=ROLSTK-I, ROLREC=ROLREC+I, NFAIL=NFAIL+I

BY (2/3)*LAMPOS;
TKANTOROLSTK=ROLSTK-I,NFAIL=NFAIL+I
BY ((ROLSTK- 2) + 4/3)*LAMPOS;

ELSE
TRANTOROLSTK= ROLSTK-I,NFAIL=NFAIL+I
BY ROLSTK*LAMPOS;

ENDIF;

ENDIF;

ELSE (* NEARLYCOINCIDENT SENSOR-NETWORK *)

IF FWREC > 0 (* SAME NODE SET *)

TRANTO ROLSTK = ROLSTK-I, ROLREC=ROLREC+I, NFAIL=NFAIL+I

BY (ROLSTK+I)*LAMPOS /2;

IF ONREC > 0 (* OTHER NODES *)

TRANTO ROLSTK = ROLSTK-I, ROLREC=ROLREC+I, NFAIL=NFAIL+I
BY ROLSTK*LAMPOS /2;

IF ROLREC > 0 THEN (* RECOVERY OR SYSTEM LOSS *)

TKANTO ROLREC = 0 BY < POSMEAN, POSSTD >;

TRANTO ROLSTK = ROLSTK-I, ROLREC=ROLREC+I, NFAIL=NFAIL+I

BY ROLSTK*LAMPOS;

ENDIF;

ENDIF;

(* YAW COMMAND SENSOR FAILURES AND RECOVERIES *)

IF YAWPED > 0 AND PITREC = 0 AND ROLREC = 0 AND YAWREC = 0

AND FTPREC = 0 AND FWREC = 0 AND ONREC = 0 THEN

IF NFAIL = 0 OR YAWPED =2 THEN

TKANTO YAWPED = YAWPED-l, YAWREC=YAWREC+I, NFAIL=NFAIL+I

BY YAWPED*LAMPOS;

ELSE

IF ROOT = 2 THEN

(* SINGLE NETWORK SUSCEPTIBILITY *)

TRANTO YAWPED=YAWPED-I, YAWREC=YAWREC+I, NFAIL=NFAIL+I

BY (2/3)*LAMPOS;

TRANTO YAWPED=YAWPED-l, NFAIL=NFAIL+I

BY ((YAWPED - 2) + 4/3)*LAMPOS;
ELSE

TRANTO YAWPED = YAWPED-I, NFAIL=NFAIL+I

BY YAWPED*LAMPOS;

ENDIF;

ENDIF;

ELSE (* NEARLY COINCIDENT SENSOR-NETWORK *)

IF FWREC > 0 (* SAME NODE SET *)

TRANTO YAWPED = YAWPED-I, YAWREC=YAWREC+I, NFAIL=NFAIL+!

BY (YAWPED+I)*LAMPOS /2;

IF ONREC > 0 (* OTHER NODES *)

A-S

TRANTOYAWPED= YAWPED-I, YAWREC=YAWREC+I, NFAIL=NFAIL+I

BY YAWPED*LAMPOS /2;

IF YAWREC > 0 THEN (* RECOVERY OR SYSTEM LOSS *)

TKANTO YAWREC = 0 BY < POSMEAN, POSSTD >;

TKANTO YAWPED = YAWPED-l, YAWKEC=YAWKEC+I, NFAIL=NFAIL+I

BY YAWPED*LAMPOS;

ENDIF;

ENDIF;

(* FORWARD AREA NODE FAILURES *)

IF FWNOD > 0 AND FWBEC = 0 AND PITREC = 0 AND ROLKEC = 0 AND

YAWREC = 0 AND FTPREC = 0 AND ONREC = 0 THEN

IF PITSTK < 3 OR ROLSTK < 3 OR YAWPED < 3 THEN

(* TEMPORARY EXHAUSTION FAILURE *)

TKANTO FWNOD=FWNOD-I, FWDIU=FWDIU-I, PITSTK=PITSTK-I,

ROLSTK=ROLSTK-I, YAWPED=YAWPED-l, ROOT=ROOT-l,

FWREC=2, NFAIL=NFAIL+I BY (2/3)*LAMNOD;

(* TEMPORARY EXHAUSTION AVOIDED *)

TRANTO FWNOD=FWNOD-I, FWDIU=FWDIU-I, PITSTK=PITSTK-I,

ROLSTK=ROLSTK-I, YAWPED=YAWPED-l, ROOT=ROOT-l,

NFAIL=NFAIL+I BY ((FWNOD-2) + 4/3)*LAMNOD;

ELSE (* NO TEMPORARY EXHAUSTION VULNERABILITY *)

IF ROOT = 2 THEN (* SINGLE NETWORK VULNERABILITY *)

TRANTO FWNOD=FWNOD-I, FWDIU=FWDIU-I, PITSTK=PITSTK-I,

ROLSTK=ROLSTK-I, YAWPED=YAWPED-l, ROOT=ROOT-l,

FWREC=FWREC+I, NFAIL=NFAIL+I BY (2/3)*LAMNOD;

TRANTO FWNOD=FWNOD-I, FWDIU=FWDIU-I, PITSTK=PITSTK-I,

ROLSTK=ROLSTK-I, YAWPED=YAWPED-I, ROOT=ROOT-I,

NFAIL=NFAIL+I BY ((FWNOD-2) + 4/3)*LAMNOD;

ELSE (* NO SINGLE NETWORK VULNERABILITY *)

IF ROOT > (FWNOD+ELMC-4) THEN

(* CHECK FOR TWO FAULTS ON SAME "CHANNEL" *)

TRANTO FWNOD=FWNOD-I, FWDIU=FWDIU-I, PITSTK=PITSTK-I,

ROLSTK=ROLSTK-I, YAWPED=YAWPED-l, ROOT=ROOT-I,

NFAIL=NFAIL+I BY ROOT* LAMNOD;

ELSE

(* FAULTS ARE ON SEPARATE "CHANNELS" *)

(* FORWARD NODE FAILURE AFFECTS ROOT LINK AND DIU *)

IF NFAIL = 0 THEN

TRANTO FWNOD=FWNOD-I, FWDIU=FWDIU-I, PITSTK=PITSTK-I,

ROLSTK=ROLSTK-I, YAWPED=YAWPED-I, ROOT=ROOT-l, FWREC=FWP_C+I,

A-4

NFAIL=NFAIL+I BY FWNOD* LAMNOD;

ELSE
TRANTOFWNOD=FWNOD-I,FWDIU=FWDIU-I,PITSTK=PITSTK-I,
ROLSTK=ROLSTK-I,YAWPED=YAWPED-I,ROOT=ROOT-I,
NFAIL=NFAIL+IBY ROOT*PITSTK*ROLSTK*YAWPED*I2LMNOD/
((FWNOD+ELMC-4)* FWDIU**2) ;

ENDIF;

ENDIF;
ENDIF;

ENDIF;

ELSE (* NEARLY COINCIDENT NETWORK-SENSOR FAILURES *)

IF FWREC = 1 THEN (* SAME NODE SET *)

(* NETWORK RECOVERY *)

TKANTO FWREC = 0 BY < NWMEAN, NWSTD >;

ENDIF;

IF PITREC = 1

TKANTO FWNOD=FWNOD-I, FWREC=FWREC+I, NFAIL=NFAIL+I BY

FWNOD*LAMNOD /2;

IF ROLREC = 1

TRANTO FWNOD=FWNOD-I, FWREC=FWREC+I, NFAIL=NFAIL+I BY
FWNOD*LAMNOD /2;

IF YAWREC = 1

TRANTO FWNOD=FWNOD-I, FWREC=FWREC+I, NFAIL=NFAIL+I BY
FWNOD*LAMNOD /2;

ENDIF;

(* OTHER NODE FAILURES *)

IF FWREC = 0 AND PITREC = 0 AND ROLREC = 0 AND

YAWREC = 0 AND FTPREC = 0 AND ONREC = 0 THEN

IF PITSTK < 3 OR ROLSTK < 3 OR YAWPED < 3 THEN

(* TEMPORARY EXHAUSTION VULNERABLE *)

TRANTO ONREC=2, NFAIL=NFAIL+I BY LAMON/3;

ELSE

IF ROOT = 2 THEN (* SINGLE NW VULNERABLE *)

ELSE

TRANTO ONREC=I, NFAIL=NFAIL+I BY LAMON/3;

ELSE

IF NFAIL = 0 TKANTO ONREC=I, NFAIL=NFAIL+I BY

2*LAMON;

ENDIF;

ENDIF;

(* NEARLY COINCIDENT FAILURES- RECOVERIES *)

IF ONREC = 1

TKANTO ONREC = 0 BY < NWMEAN, NWSTD >;

IF PITREC=I OR ROLREC=I OR YAWREC=I

TKANTO ONREC=I, NFAIL=NFAIL+I BY LAMON;

A-5

ENDIF;

(* FORWARD DIU FAILURES *)

IF FWDIU > 0 AND FWREC = 0 AND PITREC = 0 AND ROLREC = 0 AND

YAWREC = 0 AND FTPREC = 0 AND ONREC = 0 THEN

TRANTO FWDIU=FWDIU-I, PITSTK=PITSTK-I, ROLSTK=ROLSTK-I, YAWPED=

YAWPED-l, NFAIL=NFAIL+I BY PITSTK*ROLSTK*YAWPED*(LAMDIU + LAMPS) /

FWDIU**2;

ENDIF;

(* FTP CHANNEL FAILURES *)

IF FTP > 0 AND PITKEC = 0 AND ROLREC = 0 AND YAWREC = 0

AND FWREC = 0 AND FTPREC = 0 AND ONREC = 0 THEN

IF NFAIL = 0 THEN

TRANTO FTP=FTP-I, FTPREC=FTPREC+I, ROOT=ROOT-I, NFAIL=NFAIL+I

BY FTP*LAMFTP;

ELSE

TRANTO FTP=FTP-I, ROOT=ROOT-l, NFAIL=NFAIL+I

BY ROOT*LAMFTP;

ENDIF;

ELSE

IF FTPREC > 0 THEN

(* FTP CHANNEL RECOVERY *)

TRANTO FTPREC=FTPREC-I BY < FTPMEAN, FTPSTD >;

(* COINCIDENT FAULT *)

TRANTO FTP=FTP-I, FTPREC=FTPREC+I, ROOT=ROOT-I, NFAIL=NFAIL+I

BY FTP*LAM_FTP;

ENDIF;

ENDIF;

(* NETWORK INTERFACE FAILURES *)

IF ROOT > 2 AND PITREC = 0 AND ROLREC = 0 AND YAWREC = 0 AND FTPREC = 0

AND FWKEC = 0 AND ONREC = 0

TRANTO ROOT=ROOT-l, NFAIL=NFAIL+I BY ROOT*LAMROOT;

(*** ELECTRIC POWER DISTRIBUTION FAILURES ***)

IF ELMC > 0 AND PITREC = 0 AND ROLREC = 0 AND YAWREC = 0 AND FTPP_C = 0

AND FWREC = 0 AND ONKEC = 0 THEN

(* ELMC FAILURE AFFECTS DIU, FTP AND ROOT LINK *)

IF ROOT > (FWNOD+FTP-4) THEN

(* CHECK FOR FAULTS ON SAME "CHANNEL" *)

TKANTO FWDIU=FWDIU-I, PITSTK=PITSTK-I,

ROLSTK=ROLSTK-I, YAWPED=YAWPED-l, FTP=FTP-I, ROOT=ROOT-I,

ELMC=ELMC-I,

A-6

ELSE

ENDIF;
ENDIF;

NFAIL=NFAIL+IBY ROOT*LAMEL;

(* FAULTSONDIFFERENT"CHANNELS" *)

TRANTO FWDIU=FWDIU-I, PITSTK=PITSTK-I,

ROLSTK=ROLSTK-I, YAWPED=YAWPED-I, FTP=FTP-I, ROOT=ROOT-I,

ELMC=ELMC-I,

NFAIL=NFAIL+I BY ROOT* PITSTK*ROLSTK*YAWPED*

LAMEL / ((FWNOD+ELMC-4)* FWDIU**2);

A-7

(*** Mid Area Model - Safety Criteria - Network Option ***)
(* Group A *)
(* *)

SPACE = (MIDNOD:

MIDREC:

MIDDIU:

GYRO:

GYREC:

ACCEL:

ACCREC:

CNDV:

HYD:

ELMC:

ONREC:

NFAIL:

0 .4f

0 .2,

0 .4,

0 .8,

0 .2,

0 .8,

0

0

0

0

0

0

.2,

.4,

.2,

.4,

.2,

.4);

(* MID NODE *)

(* NETWORK RECOVERY INDICATOR *)

(* MID DIU STATE INDICATOR *)

(* GYROS *)

(* GZRO RECOVERY INDICATOR *)

(* ACCELEROMETERS *)

(* ACCEL RECOVERY INDICATOR *)

(* CND VALVE STATE *)

(* HYDRAULIC SYSTEM STATE *)

(* ELECTRIC SUPPLY SYSTEM STATE *)

(* OTHER NODES IN A SINGLE NETWORK *)

(* NO. OF FAILED ELEMENTS *)

START = (4, 0, 4, 8, 0, 8, 0, 4, 2, 4, 0, 0);

PKUNEIF NFAIL > 2;

DEATHIF GYREC + ACCREC + MIDREC + ONREC > i;

DEATHIF GYRO-GYREC < 3 OR ACCEL-ACCREC < 3;

DEATHIF CNDV = 0;

LIST = 2;

TIME = 3.0;

PRUNE = 1.0E-16;

ECHO = 0;

LAMGYRO = 50.0E-6;

LAMACC = 30.0E-6;

LAMNOD = 17.0E-6;

LAMDIU = 15.0E-6;

GYRMEAN = 3.0E-4;

GYRSTD = 1.0E-4;

ACCMEAN = 3.0E-4;

ACCSTD = 1.0E-4;

(* GYRO FAILURE KATE *

(* ACCELEROMETER FAILURE RATE *

(* NODE FAILURE RATE - CONDITIONED *

(* DIU FAILURE RATE - CONDITIONED *

(* RECOVERY TIME MEAN *

(* RECOVERY TIME STD DEV *

(* ACC RECOVERY TIME MEAN *

(* ACC RECOVERY TIME STD DEV *

LAMC = 50.0E-6;

LAMPOS = 10.0E-6;

LAMV = 15.0E-6;

VJAM = 3.3333E-5;

LAMHYD = 45.0E-6;

(* PROCESSOR FAILURE RATE *)

(* POSITION SENSOR FAILURE KATE *)

(* VALVE GROUP FAILURE RATE *)

(* ACTUATOR JAM FAILURE FRACTION *)

(* HYDRAULIC SYSTEM FAIL RATE *)

LAMPS = 10.0E-6;

LAMEL = 50.0E-6;

NWMEAN = 3.0E-4;

h_STD = 1.0E-4;

LAMON = 289.0E-6;

(* LOCAL POWER SUPPLY - CONDITIONED *)

(* ELMC FAILURE RATE *)

(* NW RECOVERY TIME MEAN *)

(* NW RECOVERY TIME STD DEV *)

(* OTHER NODES FAILURE RATE *)

A_

(* GYROSENSORFAILURESANDRECOVERIES*)

IF GYRO > 0 AND GYKEC = 0 AND ACCKEC = 0 AND MIDREC = 0 AND ONKEC = 0 THEN

ELSE

IF GYRO = 4 OR NFAIL = 0 THEN (* EXHAUSTION *)

TRA_NTO GYRO = GYRO-I, GYREC=GYREC+I, NFAIL=NFAIL+I

BY GYRO*LAMGYRO;

ELSE

TRANTO GYRO = GYRO-I, NFAIL=NFAIL+I

BY GYRO*LAMGYRO;

ENDIF;

(* GYRO FAILURE RECOVERY *)

IF GYREC = 1 TKANTO GYREC=0 BY < GYRMEAN, GYRSTD >;

(* NCF: GYRO - NETWORK *)

IF MIDREC = 1 OR ONREC = 1

TRANTO GYRO = GYRO-I, GYREC=GYREC+I, NFAIL=NFAIL+I

BY GYRO*LAMGYRO/2;

ENDIF;

(* ACCEL SENSOR FAILURES AND RECOVERIES *)

IF ACCEL > 0 AND GYREC = 0 AND ACCREC = 0 AND MIDREC = 0 AND ONREC = 0 THEN

ELSE

IF ACCEL = 4 OR NFAIL = 0 THEN (* EXHAUSTION *)

TKANTO ACCEL = ACCEL-I, ACCREC=ACCKEC+I, NFAIL=NFAIL+!

BY ACCEL*LAMACC;

ELSE

TRANTO ACCEL = ACCEL-I, NFAIL=NFAIL+I

BY ACCEL*LAMACC;

ENDIF;

(* ACCELEROMETER FAILURE RECOVERY *)

IF ACCREC = 1 TRANTO ACCREC=0 BY < ACCMEAN, ACCSTD >;

(* NCF: ACCEL - NETWORK *)

IF MIDREC = 1 OR ONKEC = 1

TRANTO ACCEL = ACCEL-I, ACCREC=ACCREC+I, NFAIL=NFAIL+I

BY ACCEL*LAMACC/2;

ENDIF;

(*** VALVE GROUP FAILURES ***)

IF CNDV > 0 AND GYREC=0 AND ACCKEC=0 AND MIDREC = 0 AND ONREC = 0 THEN

IF NFAIL = 0

TRANTO CNDV=0, NFAIL=NFAIL+I BY CNDV*VJAM*LAMV;

TRANTO CNDV=CNDV-I, NFAIL=NFAIL+I BY CNDV*(I.0-VJAM)*LAMV;
ENDIF; .

(* HYDRAULIC SYSTEM FAILURES *)

IF HYD > 0 AND GYREC=0 AND ACCREC=0 AND MIDREC = 0 AND

(HYD-NFAIL >= 0) AND ONKEC = 0 THEN

TRANTO CNDV=CNDV-2, HYD=HYD-I, NFAIL=NFAIL+I

BY CNDV*(CNDV-I)*LAMHYD / (2* (2*HYD-I));

IF (2*HYD-CNDV) > 0

A-9

TI_.NTO CNDV=CNDV-i, HYD=HYD-I, NFAIL=NFAIL+I

EY (2*HYD-CNDV)*2*CNDV*LAMHYD / I 2" (2*HYD-I));

IF (2*HYD-CNDV) > 1

TRANTO HYD=HYD-I, NFAIL=NFAIL+I

BY (2*HYD-CNDV)* (2*HYD-CNDV-I) *L__MHYD / (2* (2*HYD-I)) ;

ENDIF;

(* MID AREA NODE FAILURES *)

IF MIDNOD > 0 AND MIDKEC = 0 AND GYREC = 0 AND ACCREC = 0 AND ONREC = 0 THEN

IF (MIDNOD=2 AND MIDDIU=4) OR (MIDNOD=3 AND MIDDIU=3) THEN

(* TEMPORARY EXHAUSTION FAILURE *)

TRANTO MIDNOD=MIDNOD-I,

MIDREC=2, NFAIL=NFAIL+I BY LAMNOD;

(* TEMPORARY EXHAUSTION AVOIDED *)

TPANTO MIDNOD=MIDNOD-I,-

NFAIL=NFAIL+I BY (MIDNOD-I)*LAMNOD;

ELSE (* NO TEMPORARY EXHAUSTION VULNERABILITY *)

IF MIDNOD = 3 AND MIDDIU = 4 THEN

(* MID NODE FAILURE MIGHT AFFECT DIU *)

IF GYRO = 8 AND ACCEL = 8 THEN

TRANTO MIDNOD=MIDNOD-I, MIDDIU=MIDDIU-2, GYRO=GYRO-4,

ACCEL=ACCEL-4, NFAIL=NFAIL+I

BY LAMNOD;

ELSE

IF GYRO < 8

TRANTO MIDNOD=MIDNOD-I, MIDDIU=MIDDIU-2, GYRO=GYRO-3,

ACCEL=ACCEL-4, NFAIL=NFAIL+I

BY LAMNOD / 2;

IF ACCEL < 8

TRANTO MIDNOD=MIDNOD-I, MIDDIU=MIDDIU-2, GYRO=GYRO-4,

ACCEL=ACCEL-3, NFAIL=NFAIL+I

BY LAMNOD / 2;

TRANTO MIDNOD=MIDNOD-I, MIDDIU=MIDDIU-2, GYRO=GYRO-4,

ACCEL=ACCEL-4, NFAIL=NFAIL+I

BY LAMNOD / 2;

ENDIF;

TRANTO MIDNOD=MIDNOD-I, NFAIL=NFAIL+I BY 2*LAMNOD;

ELSE

IF MIDNOD : 2 AND ELMC = 2 THEN

(* ELECTRIC SUPPLY EXHAUSTION *)

TRANTO MIDNOD=MIDNOD-I, MIDDIU=MIDDIU-I, GYRO=GYRO-2,

ACCEL=ACCEL-2, NFAIL=NFAIL+I BY MIDNOD* LAMNOD;

ELSE

A-IO

(* MID NODE FAILURE CAN'T AFFECT DIU *)

IF NFAIL=0 THEN

TRANTO MIDNOD=MIDNOD-I, MIDREC=I, NFAIL=NFAIL+I

BY MIDNOD*LAMNOD;

ELSE

TRANTO MIDNOD=MIDNOD-I, NFAIL=NFAIL+I BY MIDNOD*LAMNOD;

ENDIF;

ENDIF;

ENDIF;

ENDIF;

ELSE (* NEARLY COINCIDENT NETWORK-SENSOR FAILURES *)

IF MIDREC = 1

(* NETWORK RECOVERY *)

TRANTO MIDREC = 0 BY < NWMEAN, NWSTD >;

IF GYREC = 1 OR ACCREC = 1

(* COINCIDENT FAULT *)

TRANTO MIDNOD=MIDNOD-I, MIDREC=MIDREC+I, NFAIL=NFAIL+I BY

MIDNOD *LAMNOD /2;

ENDIF;

(** OTHER NODE FAILURES **)

IF MIDREC = 0 AND GYREC = 0 AND ACCREC = 0 AND ONREC = 0 THEN

IF (MIDNOD=2 AND MIDDIU=4) OR (MIDNOD=3 AND MIDDIU=3) THEN

(* TEMPORARY EXHAUSTION VULNERABLE *)

TKANTO ONREC = 2, NFAIL=NFAIL+I BY LAMON/2;

ELSE

IF NFAIL = 0 TRANTO ONREC = I, NFAIL=NFAIL+! BY 2* LAMON;

ELSE

ENDIF;

IF ONKEC = 1 (* NW RECOVERY *)

TRANTO ONREC = 0 BY < NWMEAN, NWSTD >;

IF GYREC = i OR ACCREC = 1

(* NEARLY COINCIDENT FAULTS SENSOR - NETWORK *)

TRANTO ONREC=I, NFAIL=NFAIL+I BY LAMON;

ENDIF;

(* MID DIU FAILURES *)

IF MIDDIU > 0 AND MIDREC = 0 AND GYREC = 0 AND ACCREC = 0 AND ONKEC = 0 THEN

TRANTO MIDDIU=MIDDIU-I, GYRO=GYRO-2, ACCEL=ACCEL-2,

NFAIL=NFAIL+I BY GYRO* (GYRO-I)* ACCEL* (ACCEL-I)*

(LAMDIU + LAMPS)/ (2* (2*MIDDIU)* (2*MIDDIU-I)**2);

IF 2*MIDDIU - GYRO > 0

TKANTO MIDDIU=MIDDIU-I, GYRO=GYRO-I, ACCEL=ACCEL-2,

NFAIL=NFAIL+I BY 2*GYRO* (2*MIDDIU-GYRO)* ACCEL* (ACCEL-I)*

(LAMDIU + LAMPS)/ (2* (2*MIDDIU)* (2*MIDDIU-I)*'2);

A-11

ENDIF;

IF 2*MIDDIU - ACCEL > 0

TRANTO MIDDIU=MIDDIU-I, GYRO=GYRO-2, ACCEL=ACCEL-I,

NFAIL=NFAIL+I BY GYRO* (GYRO-I)* 2*ACCEL* (2*MIDDIU-ACCEL)*

(LAMDIU + LAMPS)/ (2* (2*MIDDIU)* (2*MIDDIU-I)**2);

(**** ELECTRICAL POWER DISTRIBUTION FAILURES ***)

IF ELMC > 2 AND MIDREC = 0 AND GYREC = 0 AND ACCREC = 0 AND ONREC = 0 THEN

IF ELMC = 4 AND NFAIL < 2

TRANTO ELMC=ELMC-I, NFAIL=NFAIL+I BY ELMC*LAMEL;

IF ELMC = 3 THEN

IF NFAIL = 1

(* TRANSITION TO SINGLE NW OPERATION *)

TRANTO MIDNOD=MIDNOD-2, MIDDIU=MIDDIU-2, GYRO=GYRO-4,

ACCEL=ACCEL-4,

ELMC=ELMC-I, NFAIL=NFAIL+I BY LAMEL;

IF MIDNOD = 3

(* TRANSITION TO ELECTRIC SOURCE EXHAUSTION *)

TRANTO MIDNOD=MIDNOD-2, MIDDIU=MIDDIU-3, GYRO=GYRO-6,

ACCEL=ACCEL-6,

ELMC=ELMC-I, NFAIL=NFAIL+I BY LAMEL/2;

IF MIDDIU = 3

(* TRANSITION TO ELECTRIC SOURCE EXHAUSTION *)

TRANTO MIDNOD=MIDNOD-2, MIDDIU=MIDDIU-2, GYRO=GYRO-4,

ACCEL=ACCEL-4,

ELMC=ELMC-I, NFAIL=NFAIL+I BY LAMEL/2;

ENDIF;

ENDIF;

A-_2

(*** Wing and Tail Area Model - Safety Criteria - Network Option ,3,)

(* Group A 3)

(* *)

SPACE = (NWKEC: 0..2,

RWP: 0..4,

RWV: 0..4,

LWP: 0..4,

LWV: 0..4,

TLP: 0..4,

TLV: 0..4,

HYD: 0..2,

ELMC: 0..4,

ONKEC: 0..2,

NFAIL: 0..4);

(3 NETWORK RECOVERY INDICATOR *)

(* RW CHANNEL STATE *)

(* RW VALVE STATE *)

(* LW CHANNEL STATE *)

(* LW VALVE STATE 3)

(* TL CHANNEL STATE *)

(* TL VALVE STATE *)

(* HYDRAULIC SYSTEM STATE *)

(* ELECTRIC SYSTEM SUPPLY STATE *)

(* OTHER NODES FAILURE RECOVERY 3)

(* NO. OF FAILED ELEMENTS *)

START = ("0, 4, 4, 4, 4, 4, 4, 2, 4. 0, 0);

PRUNEIF NFAIL > 2;

DEATHIF RWV = 0;

DEATHIF LWV = 0;

DEATHIF TLV = 0;

DEATHIF NWKEC + ONREC > i;

LIST = 2;

TIME = 3.0;

PRUNE = !.0E-16;

ECHO = 0;

LAMC = 50.0E-6;

LAMPOS = 10.0E-6;

LAMSD = 20.0E-6;

LAMV = 15.0E-6;

VJAM = 3.3333E-5;

LAMNODH = 42.5E-6;

LAMDIUH = 37.5E-6;

LAMHYD = 45.0E-6;

LAMPSH = 25.0E-6;

LAMEL = 50.0E-6;

NWMEAN = 3.0E-4;

NWSTD = 1.0E-4;

LAMON = 68.0E-6;

(3 PROCESSOR FAILURE RATE 3)

(* POSITION SENSOR FAILURE KATE *)

(3 SERVODRIVE GROUP FAILURE RATE *)

(* VALVE GROUP FAILURE RATE *)

(* ACTUATOR JAM FAILURE FPACTION *)

(3 NODE FAILURE KATE - HARSH *)

(* DIU FAILURE BATE - HARSH *)

(* HYDRAULIC SYSTEM FAIL RATE 3)

(3 LOCAL POWER SUPPLY RATE - HARSH 3)

(* ELMC FAILURE RATE *)

(* _# RECOVERY TIME - MEAN 3)

(* NW RECOVERY TIME - STD DEV *)

(3 OTHER NODE FAILURE RATE *)

(33, RW PROCESSOR GROUP / DIU FAILURE TRANSITIONS 3,,)

IF NWREC = 0 AND ONREC = 0 THEN

A-13

IF RWP > 0

ENDIF;

ENDIF;

THEN

TRANTO RWP=RWP-I, NFAIL=NFAIL+I

+ (LAMDIUH + LAMPSH));

BY RWP* (2*(LAMC + LAMPOS)

(*** RW VALVE GROUP FAILURES ***)

IF RWV > 0 AND NWKEC = 0 AND ONREC = 0 THEN

IF NFAIL = 0

TRANTO RWV=0, NFAIL=NFAIL_I BY RWV*VJAM*LAMV;

TRA}ITO RWV=RWV-I, NFAIL=NFAIL+I BY RWV*(I.0-VJAM)*LAMV;

ENDIF;

(* RW NODE FAILURES *)

IF NWREC = 0 AND ONREC = 0 THEN

IF RWP < 3 OR LWP < 3 OR TLP < 3 THEN

ELSE

(* TEMPORARY EXHAUSTION FAILURE *)

TRANTO RWP=RWP-I, NWREC=2, NFAIL=NFAIL+I

BY 2*LAMNODH /3;

(* TEMPORARY EXHAUSTION NOT POSSIBLE *)

IF RWP > 0 THEN

IF NFAIL=0 THEN

TRANTO RWP=RWP-I, NWREC=I, NFAIL=NFAIL+I

BY RWP*LAMNODH;

ELSE

T.RANTO RWP=RWP-I, NFAIL=NFAIL+i

BY RWP*LA/v/NODH;

END IF;

ENDIF;

ENDIF;

ENDIF;

(*** LW PROCESSOR GROUP / DIU FAILURE TRANSITIONS ***)

IF NWREC : 0 AND ONREC = 0 THEN

IF LWP > 0 THEN

TRANTO LWP=LWP-I, NFAIL=NFAIL+I

+ (LAMDIUH + LAMPSH));

ENDIF;

ENDIF;

BY LWP* (2* (LAMC + LAMPOS)

(*** LW VALVE GROUP FAILURES ***)

IF LWV > 0 AND NWREC = 0 AND ONREC = 0 THEN

IF NFAIL = 0

TRANTO LWV=0, NFAIL=NFAIL+I BY LWV*VJAM*LAMV;

TRANTO L_:=LWV-I, NFAIL=NFAIL+I BY LWV*(I.0-VJAM)*LAMV;

A-14

ENDIF;

(* LW NODE FAILURES *)

IF NWREC = 0 AND ONREC = 0 THEN

IF RWP < 3 OR LWP < 3 OR TLP < 3 THEN

ELSE

(* TEMPORARY EXHAUSTION FAILURE *)

TKANTO LWP=LWP-I, NWREC=2, NFAIL=NFAIL+I

BY 2*LAMNODH /3;

(* TEMPORARY EXHAUSTION NOT POSSIBLE *)

IF LWP > 0 THEN

IF NFAIL=0 THEN

TRANTO LWP=LWP-I, NWREC=I, NFAIL=NFAIL+I

BY LWP*LAMNODH;

ELSE

TRANTO LWP=LWP-I, NFAIL=NFAIL+I

BY LWP*LAMNODH;

ENDIF;

ENDIF;

ENDIF;

ENDIF;

(*** TL PROCESSOR GROUP / DIU FAILURE TRANSITIONS ***)

IF NWREC = 0 AND ONREC = 0 THEN

IF TLP > 0 THEN

TRANTO TLP=TLP-I, NFAIL=NFAIL+I

+ (LAMDIUH + LAMPSH));

ENDIF;

ENDIF;

BY TLP* (2*(LAMC + LAMPOS)

(*** TL VALVE GROUP FAILURES ***)

IF TLV > 0 AND NWREC = 0 AND ONREC = 0 THEN

IF NFAIL = 0

TRANTO TLV=0, NFAIL=NFAIL+I BY TLV*VJAM*LAMV;

TRANTO TLV=TLV-I, NFAIL=NFAIL+I BY TLV*(I.0-VJAM)*LAMV;

ENDIF;

(* TL NODE FAILURES *)

IF NWREC = 0 AND ONREC = 0 THEN

IF RWP < 3 OR LWP < 3 OR TLP < 3 THEN

ELSE

(* TEMPORARY EXHAUSTION FAILURE *)

TRANTO TLP=TLP-I, NWREC=2, NFAIL=NFAIL+I

BY 2*LAMNODH /3;

(* TEMPORARY EXHAUSTION NOT POSSIBLE *)

A-15

IF TLP > 0 THEN

IF NFAIL=0 THEN

TRANTO TLP=TLP-I, NWREC=I, NFAIL=NFAIL+I

BY TLP*LAMNODH;

ELSE

TRANTO TLP=TLP-I, NFAIL=NFAIL+I

BY TLP*LAMNODH;

ENDIF;

ENDIF;

ENDIF;

ENDIF;

(* NEARLY COINCIDENT FAULTS - RECOVERIES *)

IF NWREC = 1 THEN

(* NETWORK RECOVERY *)

TRANTO NWREC = 0 BY < NWMEAN, NWSTD >;

(* SAME NODE SET *)

TRANTO NWREC=NWREC+I, NFAIL=NFAIL+I

BY 6*LAMNODH;

ENDIF;

IF ONREC = 1 THEN (* OTHER NODE SET *)

TKANTO NWKEC=NWKEC+I, _AIL=NFAIL+I

BY 6*LAMNODH;

ENDIF;

(** OTHER NODE FAILURES **)

IF NWREC = 0 AND ONREC = 0 THEN

IF RWP < 3 OR LWP < 3 OR TLP < 3 THEN

(* VULNERABLE TO TEMPORARY EXHAUSTION *)

TRANTO ONREC=2, NFAIL=NFAIL+I BY LAMON/3;

ELSE

IF NFAIL = 0

TRANTO ONREC = I, NFAIL=NFAIL+I BY 2*LAMON;

ENDIF;

ELSE (* NEARLY COINCIDENT NW FAULT *)

IF NWREC > 0

TRANTO ONREC=I, NFAIL=NFAIL+I BY LAMON;

IF ONREC > 0 THEN

(* NETWORK RECOVERY *)

TRANTO ONREC = 0 BY < NWMEAN, NWSTD >;

(* NCF - OTHER NODES *)

TRANTO ONREC=ONREC+I, NFAIL=NFAIL+I BY LAMON;

ENDIF;

END IF ;

(* HYDRAULIC SYSTEM FAILURES *)

A-16

IF HYD > 0 AND NWREC = 0 AND ONKEC = 0

AND (HYD-NFAIL >= 0) THEN

TKANTO RWV=RWV-2, LWV=LWV-2, TLV=TLV-2, HYD=HYD-I, NFAIL=NFAIL+I

BY RWV* (RWV-I) *LWV* (LWV-I) *TLV* (TLV-I) *LAMHYD /

(2* (2*HYD)**2 * (2*HYD-I)**3) ;

ENDIF;

(**** ELECTRIC POWER DISTRIBUTION ***)

IF ELMC > 0 AND NWREC = 0 AND ONREC = 0 THEN

TRANTO RWP=RWP-I, LWP=LWP-I, TLP=TLP-I, ELMC=ELMC-I,

NFAIL=NFAIL+I BY RWP* LWP* TLP* LAMEL / (ELMC**2) ;

ENDIF;

A-17

(***

(*
(*

Air Model - Safety Criteria - Network Option

Group B

***)

*)

*)

SPACE = (AIRNOD:

AIRKEC:

AIRDIU:

AOA:

AOAREC:

AOS:

AOSREC:

THROT: 0

THROTREC: 0

FTP: 0

FTPREC: 0

ROOT: 0

ELMC: 0
ONKEC: 0

NFAIL: 0

0. 4 r

0. 3,

0. 4,

0. 4,

0. 2,

0. 4,

0 2,

4,

I,

41

2,

4,

4,

3,

4);

(* AIR NODE *

(* NETWORK RECOVERY INDICATOR *

(* FORWARD DIU STATE INDICATOR *

(* AOA SENSOR *'

(* AOA RECOVERY INDICATOR *

(* AOS SENSOR *

(* AOS RECOVERY INDICATOR *'

(* THROTTLE POSITION SENSOR *

(* THROTTLE FAILURE INDICATOR *

(* FTP CHANNEL STATUS *

(* FTP CHANNEL RECOVERY IND. *'

(* ROOT LINK STATUS *

(* ELECTRIC POWER STATE *

(* OTHER NODES IN A SINGLE NETWORK *

(* NO. OF FAILED ELEMENTS *'

START = (4, 0, 4, 4, 0, 4, 0, 4, 0, 4, 0, 4, 4, 0, 0);

PRUNEIF NFAIL > 2;

DEATHIF FTP < 2;

DEATHIF FTPREC > I;

DEATHIF AOAREC > 1 OR AOSREC > i;

DEATHIF AOA-AOAREC < 1 OR AOS-AOSKEC < i;

DEATHIF THROT-THROTKEC < I;

DEATHIF AIRREC = 3 OR ONREC = 3;

DEATHIF AIRREC + ONREC > I;

DEATHIF AIRREC + AOAREC + AOSREC > I;

DEATHIF ONREC + AOAKEC + AOSREC > I;

DEATHIF ROOT < 3 AND (AOAKEC > 0 OR AOSREC > 0 OR THROTREC > 0

OK AIRREC > 0 OR ONKEC > 0);

LIST = 3;

TIME = 3.0;

PRUNE = 1.0E-16;

ECHO = 0;

LAMANG = 33.0E-6;

LAMPRESS= 20.0E-6;

LAMPOS = 10.0E-6;

(* FLOW ANGLE SENSOR FAILURE RATE

(* PRESSURE SENSOR FAILURE RATE

(* POSITION SENSOR FAILURE RATE

*)

*)
*)

A-18

LAMNOD = 17.0E-6;

LAMDIU = 15.0E-6;

REC.MEAN = 3.0E-4;

KECSTD = I. 0E-4;

NWMEAN = 3.0E-4;

NWSTD = 1.0E-4;

LAMPS = I0.0E-6;

LAMEL = 50.0E-6;

LAMFTP = 200.0E-6;

LAMROOT = 15.0E-6;

FTPMEAN = 5.0E-6;

FTPSTD = 1.0E-6;

LAMON = 255.0E-6;

(* NODE FAILURE RATE - CONDITIONED

(* DIU FAILURE RATE - CONDITIONED

(* RECOVERY TIME MEAN

(* RECOVERY TIME STD DEV

(* NW RECOVERY TIME MEAN

(* NW RECOVERY TIME STD DEV

(* LOCAL POWER SUPPLY RATE - CONDITIONED

(* ELECTRIC POWER CENTER FAILURE RATE

(* FTP CHANNEL FAILURE RATE

(* FTP NETWORK INTERFACE FAILURE RATE

(* FTP RECOVERY TIME MEAN

(* FTP RECOVERY TIME STD DEV

(* OTHER NODES ON SINGLE NW FAIL RATE

*)
*)

*)
*)
*)

*)

*)

*)
*)

*)
*)

*)

*)

(* AOA SENSOR FAILURES AND RECOVERIES *)

IF AOA > 0 AND AOAKEC = 0 AND AOSREC = 0

AND FTPREC = 0 AND AIRREC = 0 AND ONKEC = 0 THEN

IF NFAIL = 0 OR AOA = 2 THEN

TRANTO AOA = AOA-I, AOAKEC=AOAREC+I, NFAIL=NFAIL+I

BY AOA*LAMANG;

ELSE

IF ROOT = 2 THEN

(* SINGLE NETWORK SUSCEPTIBILITY *)

TKANTO AOA=AOA-I, AOAKEC=AOAREC+I, NFAIL=NFAIL+I

BY (2/3)*LAMANG;

TRANTO AOA=AOA-I, NFAIL=NFAIL+I

BY ((AOA - 2) + 4/3)*LAMANG;

ELSE

TRANTO AOA = AOA-I, NFAIL=NFAIL+I

BY AOA*LAMANG;

ENDIF;

ELSE

ENDIF;

(* NEARLY COINCIDENT SENSOR-NETWORK *)

IF AIRREC > 0 (* SAME NODE SET *)

TKANTO AOA = AOA-I, AOAREC=AOAREC+I, NFAIL=NFAIL+I

BY (AOA+I)*LAMANG /2;

IF ONKEC > 0 (* OTHER NODES *)

TRANTO AOA = AOA-I, AOAREC=AOAREC+I, NFAIL=NFAIL+I

BY AOA*LAMANG /2;

IF AOAKEC > 0 THEN (* RECOVERY OR SYSTEM LOSS *)

TRANTO AOAREC = 0 BY < RECMEAN, RECSTD >;

TRANTO AOA = AOA-I, AOAREC=AOAREC+I, NFAIL=NFAIL+I

BY AOA*LAMANG;

ENDIF;

ENDIF;

A-19

A-20

(* AOS SENSOR FAILURES AND RECOVERIES *)

IF AOS > 0 AND AOAREC = 0 AND AOSREC = 0

AND FTPKEC = 0 AND AIKREC = 0 AND ONREC = 0 THEN

IF NFAIL = 0 OR AOS = 2 THEN

TKANTO AOS = AOS-I, AOSKEC=AOSKEC+I, NFAIL=NFAIL+I

BY AOS*LAMANG;

ELSE

IF ROOT = 2 THEN

(* SINGLE NETWORK SUSCEPTIBILITY *)

TKANTO AOS=AOS-I, AOSREC=AOSREC+I, NFAIL=NFAIL+I

BY (2/3)*LAMANG;

TRANTO AOS=AOS-I, NFAIL=NFAIL+I

BY ((AOS - 2) + 4/3)*LAMANG;

ELSE

TKANTO AOS = AOS-I, NFAIL=NFAIL+I

BY AOS*LAMANG;

ENDIF;

ENDIF;

ELSE (* NEARLY COINCIDENT SENSOR-NETWORK *)

IF AIRREC > 0 (* SAME NODE SET *)

TKANTO AOS = AOS-I, AOSREC=AOSREC+I, NFAIL=NFAIL+I

BY (AOS+I)*LAMANG /2;

IF ONREC > 0 (* OTHER NODES *)

TRANTO AOS = AOS-I, AOSREC=AOSREC+I, NFAIL=NFAIL+I

BY AOS*LAMANG /2;

IF AOSREC > 0 THEN (* RECOVERY OR SYSTEM LOSS *)

TKANTO AOSREC = 0 BY < RECMEAN, RECSTD >;

TRANTO AOS = AOS-I, AOSREC=AOSREC+I, NFAIL=NFAIL+I

BY AOS*LAMANG;

ENDIF;

ENDIF;

(* THROTTLE SENSOR FAILURES AND RECOVERIES *)

IF THROT > 0 AND AOAREC = 0 AND AOSREC = 0

AND FTPREC = 0 AND AIKREC = 0 AND ONREC = 0 THEN

IF THROT = 2 THEN

TRANTO THROT=THROT-I, THROTREC=THROTREC+I, NFAIL=NFAIL+I

BY THROT*LAMPOS;

ELSE

IF ROOT = 2 THEN

(* SINGLE NETWORK SUSCEPTIBILITY *)

TRANTO THROT=THROT-I, THROTREC=THROTREC+I, NFAIL=NFAIL+I

BY (2/3)*LAMPOS;

TRANTO THROT=THROT-I, NFAIL=NFAIL+I

BY ((THROT - 2) + 4/3)*LAMPOS;

ELSE

TRANTO THROT = THROT-I, NFAIL=NFAIL+I

BY THROT*LAMPOS;

ENDIF;
ENDIF;

ENDIF;

(* AIR AREANODEFAILURES*)

IF AIKNOD> 0 ANDAIRREC= 0 AND
AOAREC= 0 ANDAOSREC= 0 AND FTPREC = 0 AND ONREC = 0 THEN

IF AOA < 3 OR AOS < 3 THEN

(* TEMPORARY EXHAUSTION FAILURE *)

TRANTO AIRNOD=AIRNOD-I, AIRDIU=AIRDIU-I,

AOA=AOA-I, AOS=AOS-I, THROT=THROT-I, ROOT=ROOT-l,

AIRREC=2, NFAIL=NFAIL+I BY (2/3)*LAMNOD;

(* TEMPORARY EXHAUSTION AVOIDED *)

TRANTO AIRNOD=AIRNOD-I, AIRDIU=AIRDIU-I,

AOA=AOA-I, AOS=AOS-I, THROT=THROT-I, ROOT=ROOT-l,

NFAIL=NFAIL+I BY ((AIRNOD-2) + 4/3)*LAMNOD;

ELSE (* NO TEMPORARY EXHAUSTION VULNERABILITY *)

IF ROOT = 2 THEN (* SINGLE NETWORK VULNERABILITY *)

TRANTO AIRNOD=AIKNOD-I, AIRDIU=AIRDIU-I,

AOA=AOA-I, AOS=AOS-I, THROT=THROT-!, ROOT=ROOT-l,

AIRREC=AIRREC+I, NFAIL=NFAIL+I BY (2/3)*LAMNOD;

TRANTO AIRNOD=AIRNOD-I, AIRDIU=AIRDIU-I,

AOA=AOA-I, AOS=AOS-I, THROT=THROT-I, ROOT=ROOT-I,

NFAIL=NFAIL+I BY ((AIRNOD-2) + 4/3)*LAMNOD;

ELSE (* NO SINGLE NETWORK VULNERABILITY *)

(* IN THIS MODEL FAULTS ARE ON SEPARATE "CHANNELS" *)

(* FORWARD NODE FAILURE AFFECTS ROOT LINK AND DIU *)

IF NFAIL = 0 THEN

TKANTO AIRNOD=AIRNOD-I, AIRDIU=AIRDIU-I,

AOA=AOA-I, AOS=AOS-I, THROT=THROT-I, ROOT=ROOT-l,

AIRREC=AIRREC+I, NFAIL=NFAIL+I BY AIRNOD* LAMNOD;

ELSE

TRANTO AIRNOD=AIRNOD-I, AIRDIU=AIRDIU-I,

AOA=AOA-I, AOS=AOS-I, THROT=THROT-I, ROOT=ROOT-l,
NFAIL=NFAIL+I BY ROOT* AOA*AOS* THROT* LAMNOD/

((AIKNOD+ELMC-4)* AIRDIU**2);

ENDIF;

ENDIF;

ENDIF;

ELSE (* NEARLY COINCIDENT NETWORK-SENSOR FAILURES *)

IF AIRREC = 1 THEN (* SAME NODE SET *)

(* NETWORK RECOVERY *)

TRANTO AIRREC = 0 BY < NWMEAN, NWSTD >;

A-21

TRANTO AIRREC = 3, NFAIL=NFAIL+I BY 2*LAMNOD;

ENDIF;

IF ONREC = 1

TRANTO AIRREC = 3, NFAIL=NFAIL+I BY 2*LAMNOD;

IF AOAREC = 1 OR AOSREC = 1

TRANTO AIKNOD=AIRNOD-I, AIRKEC=AIR/_C+I, NFAIL=NFAIL+I BY

AIRNOD*LAMNOD /2;

ENDIF;

(* OTHER NODE FAILURES *)

IF AIRREC = 0 AND

AOAREC = 0 AND AOSREC = 0 AND FTPREC = 0 AND ONREC = 0 THEN

IF AOA < 3 OR AOS < 3 THEN

(* TEMPORARY EXHAUSTION VULNERABLE *)

TRANTO ONREC=2, NFAIL=NFAIL+I BY LAMON/3;

ELSE

IF ROOT = 2 THEN (* SINGLE NW VULNERABLE *)

ELSE

TRANTO ONREC=I, NFAIL=NFAIL+I BY LAMON/3;
ELSE

IF NFAIL = 0 TRANTO ONREC=I, NFAIL=NFAIL+I BY

2*LAMON;

ENDIF;

ENDIF;

(* NEARLY COINCIDENT FAILURES- RECOVERIES *)

IF ONREC = 1 THEN

TRANTO ONREC = 0 BY < NWMEAN, NWSTD >;

TRANTO ONREC = 3, NFAIL=NFAIL+I BY LAMON;

ENDIF;

IF AIRREC = 1

TRANTO ONREC = 3, NFAIL=NFAIL+I BY LAMON;

IF AOAREC=I OR AOSKEC = 1

TRANTO ONREC=I, NFAIL=NFAIL+I BY LAMON;

ENDIF;

(* FORWARD DIU FAILURES *)

IF AIRDIU > 0 AND AIRREC = 0 AND

AOAREC = 0 AND AOSREC = 0 AND FTPREC = 0 AND ONREC = 0 THEN

TRANTO AIRDIU=AIRDIU-I, AOA=AOA-I, AOS=AOS-I, THROT=THROT-I,

NFAIL=NFAIL+I BY AOA*AOS* THROT*(LAMDIU + LAMPS) / AIRDIU**2;

ENDIF;

(* FTP CHANNEL FAILURES *)

IF FTP > 0 AND AOAREC = 0 AND AOSREC = 0

A-22

AND AIRREC = 0 AND FTPREC = 0 AND ONREC = 0 THEN

IF NFAIL = 0 THEN

TRANTO FTP=FTP-I, FTPREC=FTPREC+I, ROOT=ROOT-l, NFAIL=NFAIL+I

BY FTP*LAMFTP ;

ELSE

TRANTO FTP=FTP-I, ROOT=ROOT-I, NFAIL=NFAIL+I

BY ROOT* LAMFTP ;

ENDIF;

ELSE

IF FTPREC > 0 THEN

(* FTP CHANNEL RECOVERY *)

TRANTO FTPREC=FTPREC-I BY < FTPI_EAN, FTPSTD >;

(* COINCIDENT FAULT *)

TRANTO FTP=FTP-I, FTPREC=FTPREC+I, ROOT=ROOT-I, NFAIL=NFAIL+I

BY FTP*LAMFTP ;

ENDIF;

ENDIF;

(* NETWORK INTERFACE FAILURES *)

IF ROOT > 2 AND AOAREC = 0 AND AOSREC = 0

AND FTPREC = 0 AND AIRREC = 0 AND ONREC = 0

TRANTO ROOT=ROOT-l, NFAIL=NFAIL+I BY ROOT*LAI_OOT;

(*** ELECTRIC POWER DISTRIBUTION FAILURES ***)

IF ELMC > 0 AND AOAREC = 0 AND AOSREC = 0

AND FTPREC = 0 AND AIRREC = 0 AND ONREC = 0 THEN

(* ELMC FAILURE AFFECTS DIU, FTP AND ROOT LINK *)

(* IN THIS MODEL FAULTS ON DIFFERENT "CHANNELS" *)

TRANTO AIRDIU=AIRDIU-I,

AOA=AOA-I, AOS=AOS-I, FTP=FTP-I, THROT=THROT-I,

ROOT=ROOT-I, ELMC=ELMC-I,
NFAIL=NFAIL+I BY ROOT* AOA* AOS* THROT*

LAMEL / ((AIRNOD+ELMC-4)* AIRDIU**2);

ENDIF;

A-_

(***

(*
(*

Forward Area Model - Safety Criteria - Bus Option

Group A

***)

*)

*)

SPACE

START

PRUNEIF

DEATHIF

DEATHIF

DEATHIF

= (FWDIU:

PITSTK:

PITREC:

ROLSTK:

ROLREC:

YAWPED:

YAWREC:

FTP:

FTPREC:

ROOT:

NFAIL:

0 .4t

0 .4,

0 .2,

0 .4,

0 .2,

0 .4,

0 .2,

0 .4,

0 .2,

0 .4,

0 .4);

(* FORWARD DIU STATE INDICATOR *)

(* PITCH COF_AND SENSOR *)

(* PITCH SENSOR RECOVERY INDICATOR *)

(* ROLL COMMAND SENSOR *)

(* ROLL SENSOR RECOVERY INDICATOR *)

(* YAW COMMAND SENSOR *)

(* YAW SENSOR RECOVERY INDICATOR *)

(* FTP CHANNEL STATUS *)

(* FTP CHANNEL RECOVERY IND. *)

(* ROOT LINK STATUS *)

(* NO. OF FAILED ELEMENTS *)

= (4, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0);

NFAIL > 2;

PITREC > i OR ROLREC > i OR

YAWREC > I;

PITSTK-PITKEC < 1 OR ROLSTK-ROLREC < 1 OR YAWPED-YAWREC < I;

FTP - FTPREC < i;

LIST = 2;

TIME = 3.0;

PRUNE = 1.0E-16;

ECHO = 0;

LAMPOS = 10.0E-6;

LAMNOD = 15.0E-6;

LAMDIU = 15.0E-6;

POSMEAN = 3.0E-4;

POSSTD = 1.0E-4;

NWMEAN = 3.0E-4;

NWSTD = 1.0E-4;

LAMPS = 10.0E-6;

LAMEL = 50.0E-6;

LAMFTP = 200.0E-6;

LAMROOT = 15.0E-6;

FTPMEAN = 5.0E-6;

FTPSTD = 1.0E-6;

LAMGYRO = 50.0E-6;

LAMACC = 30.0E-6;

LAMOD = 127.5E-6;

(* DIUACT = 0.I0; *)

(* POSITION SENSOR FAILURE KATE *)

(* NODE FAILURE RATE - CONDITIONED *)

(* DIU FAILURE RATE - CONDITIONED *)

(* RECOVERY TIME MEAN *)

(* RECOVERY TIME STD DEV *)

(* NW RECOVERY TIME MEAN *)

(* NW RECOVERY TIME STD DEV *)

(* LOCAL POWER SUPPLY RATE - CONDITIONED

(* ELECTRIC POWER CENTER FAILURE RATE

(* FTP CHANNEL FAILURE RATE

(* FTP NETWORK INTERFACE FAILURE RATE

(* FTP RECOVERY TIME MEAN

(* FTP RECOVERY TIME STD DEV

(* GYRO FAILURE RATE

(* ACCELEROMETEK FAILURE KATE

(* OTHER DIUS ON SINGLE BUS

(* DIU ACTIVE FAILURE FRACTION

*)

*)
*)

*)
*)

*)

*)
*)

*)
*)

A-24

(* PITCH COMMAND SENSOR FAILURES AND RECOVERIES *)

IF PITSTK > 0 AND PITREC = 0 AND ROLREC = 0 AND YAWREC = 0

AND FTPREC = 0 THEN

IF NFAIL = 0 OR PITSTK = 2 THEN

TRANTO PITSTK = PITSTK-I, PITKEC=PITREC+I, NFAIL=NFAIL+I

BY PITSTK*LAMPOS;

ELSE

TRANTO PITSTK = PITSTK-I, NFAIL=NFAIL+I

BY PITSTK*LAMPOS;

ENDIF;

ELSE (* NEARLY COINCIDENT FAILURES *)

IF PITREC > 0 THEN (* RECOVERY OR SYSTEM LOSS *)

TRANTO PITREC = 0 BY < POSMEAN, POSSTD >;

TRANTO PITSTK = PITSTK-I, PITREC=PITREC+I, NFAIL=NFAIL+I

BY PITSTK*LAMPOS;

ENDIF;

ENDIF;

(* ROLL COMMAND SENSOR FAILURES AND RECOVERIES *)

IF ROLSTK > 0 AND PITREC = 0 AND ROLREC = 0 AND YAWREC = 0

AND FTPKEC = 0 THEN

IF NFAIL = 0 OR ROLSTK = 2 THEN

TRANTO ROLSTK = ROLSTK-I, ROLKEC=ROLREC+I, NFAIL=NFAIL+I

BY ROLSTK*LAMPOS;

ELSE

TRANTO ROLSTK _ ROLSTK-I, NFAIL=NFAIL+I

BY ROLSTK*LAMPOS;

ENDIF;

ELSE (* NEARLY COINCIDENT FAILURES *)

IF ROLREC > 0 THEN (* RECOVERY OR SYSTEM LOSS *)

TRANTO ROLREC = 0 BY < POSMEAN, POSSTD >;

TKANTO ROLSTK = ROLSTK-I, KOLKEC=ROLREC+I, NFAIL=NFAIL+I

BY ROLSTK*LAMPOS;

ENDIF;

ENDIF;

(* YAW CO_ SENSOR FAILURES AND RECOVERIES *)

IF YAWPED > 0 AND PITREC = 0 AND ROLREC = 0 AND YAWREC = 0

AND FTPREC = 0 THEN

IF NFAIL = 0 OR YAWPED _ 2 THEN

TRANTO YAWPED = YAWPED-I, YAWREC=YAWREC+I, NFAIL=NFAIL+I

BY YAWPED*LAMPOS;

ELSE

A-25

TRANTO YAWPED = YAWPED-l, NFAIL=NFAIL+I

BY YAWPED*LAMPOS ;

ENDIF;

ELSE (* NEARLY COINCIDENT FAILURES *)

IF YAWREC > 0 THEN (* RECOVERY OR SYSTEM LOSS *)

TRANTO YAWREC = 0 BY < POSMEAN, POSSTD >;

TRANTO YAWPED = YAWPED-l, YAWREC=YAWREC+I, NFAIL=NFAIL+I
BY YAWPED*LAMPOS;

ENDIF;

ENDIF;

(*

(*
(*

*** FORWARD DIU FAILURES *** *)

PASSIVE FAILURE TRANSITIONS LISTED HERE. ACTIVE *)

FAILURE TRANSITIONS IN BUS AND INTERFACE FAILURE AREA. *)

IF FWDIU > 0 AND PITREC = 0 AND ROLREC = 0 AND

YAWREC = 0 AND FTPREC = 0 THEN

TRANTO FWDIU=FWDIU-I, PITSTK=PITSTK-I, ROLSTK=ROLSTK-I, YAWPED=

YAWPED-l, NFAIL=NFAIL+I BY PITSTK* KOLSTK* YAWPED* (LAMDIU*

(I.0-DIUACT) + LAMPS) / FWDIU**2;

IF FWDIU > PITSTK (* AFFECTED DIU HAS FAILED PITSTK *)

TRANTO FWDIU=FWDIU-I, ROLSTK=ROLSTK-I, YAWPED=

YAWPED-l, NFAIL=NFAIL+I BY (FWDIU-PITSTK)*ROLSTK*

YAWPED*(LAMDIU*(I.0-DIUACT) + LAMPS) / FWDIU**2;

IF FWDIU > ROLSTK (* AFFECTED DIU HAS FAILED ROLSTK *)

TRANTO FWDIU=FWDIU-I, PITSTK=PITSTK-I, YAWPED=

YAWPED-l, NFAIL=NFAIL+I BY PITSTK*(FWDIU-ROLSTK)*

YAWPED*(LAMDIU*(I.0-DIUACT) + LAMPS) / FWDIU**2;

ENDIF;

IF FWDIU > YAWPED (* AFFECTED DIU HAS FAILED YAWPED *)

TRANTO FWDIU=FWDIU-I, PITSTK=PITSTK-I, ROLSTK=ROLSTK-I,

NFAIL=NFAIL+I BY PITSTK*ROLSTK*(FWDIU-YAWPED)*

(LAMDIU*(I.0-DIUACT) + LAMPS) / FWDIU**2;

(* FTP CHANNEL FAILURES *)

IF FTP > 0 AND PITREC = 0 AND ROLREC = 0 AND YAWREC = 0

AND FTPREC = 0 THEN

IF NFAIL = 0 OR FTP = 2 THEN

TRANTO FWDIU=FWDIU-I, PITSTK=PITSTK-I, ROLSTK=ROLSTK-I, YAWPED=

YAWPED-l, FTP=FTP-I, FTPREC=FTPREC+I, ROOT=ROOT-l, NFAIL=NFAIL+I
BY FTP*LAMFTP;

ELSE

(* FAILURE AFFECTS DIU, FTP AND ROOT LINK *)

TRANTO FWDIU=FWDIU-I, PITSTK=PITSTK-I,

ROLSTK=ROLSTK-I, YAWPED=YAWPED-I, FTP=FTP-I, ROOT=ROOT-I,

NFAIL=NFAIL+I BY PITSTK*ROLSTK*YAWPED*

A-26

LAMFTP / (FWDIU**2);

IF FWDIU > PITSTK (* AFFECTED DIU HAS FAILED PITSTK *)

TRANTO FWDIU=FWD IU- I,

ROLSTK=ROLSTK-I, YAWPED=YAWPED-l, FTP=FTP-I, ROOT=ROOT-l,
NFAIL=NFAIL+I

BY (FWDIU-PITSTK) *ROLSTK*YAWPED* LAMFTP /

(FWDIU**2);

IF FWDIU > ROLSTK (* AFFECTED DIU HAS FAILED ROLSTK *)

TRANTO FWDIU=FWDIU-I, PITSTK=PITSTK-I,

YAWPED=YAWPED-l, FTP=FTP-I, ROOT=ROOT-I,
NFAIL=NFAIL+I

BY PITSTK*(FWDIU-ROLSTK)*YAWPED* LAMFTP /

(FWDIU**2);

IF FWDIU > YAWPED (* AFFECTED DIU HAS FAILED YAWPED *)

TRANTO FWDIU=FWDIU-I, PITSTK=PITSTK-I,

ROLSTK=ROLSTK-I, FTP=FTP-I, ROOT=ROOT-l,
NFAIL=NFAIL+I

BY PITSTK* ROLSTK*(FWDIU-YAWPED)*

LAMFTP / (FWDIU**2);

IF ROOT > FWDIU

(* AFFECTED CHANNEL HAS FAILED DIU *)

TRANTO FTP=FTP-I, ROOT=ROOT-I, NFAIL=NFAIL+I

BY (ROOT-FWDIU) * LAMFTP;

IF FTP > ROOT (* AFFECTED CHANNEL HAS FAILED ROOT *)

ELSE

ENDIF;

TRANTO FTP=FTP-I, NFAIL=NFAIL+I

BY (FTP-ROOT)* LAMFTP;

IF FTPKEC > 0 THEN

(* FTP CHANNEL RECOVERY *)

TRANTO FTPREC=FTPREC-I BY < FTPMEAN, FTPSTD >;

(* COINCIDENT FAULT *)

TKANTO FTP=FTP-I, FTPKEC=FTPREC+I, ROOT=ROOT-l, NFAIL=NFAIL+I

BY FTP*LAMFTP;

ENDIF;

ENDIF;

(* BUS AND NETWORK INTERFACE FAILURES *)

IF ROOT > 0 AND PITREC = 0 AND ROLREC = 0 AND YAWKEC = 0 AND FTPREC = 0

THEN

(* FAILURE AFFECTS DIU AND ROOT LINK *)

TKANTO FWDIU=FWDIU-I, PITSTK=PITSTK-I,

KOLSTK=ROLSTK-I, YAWPED=YAWPED-I, ROOT=ROOT-I,

NFAIL=NFAIL+I BY PITSTK*ROLSTK*YAWPED*

A-27

ENDIF;

(LAMROOT + (LAMDIU + LAMOD) * DIUACT) / (FWDIU**2);

IF FWDIU > PITSTK (* AFFECTED DIU HAS FAILED PITSTK *)

TRANTO FWDIU=FWDIU-I,

ROLSTK=ROLSTK-I, YAWPED=YAWPED-l, ROOT=ROOT-l,

NFAIL=NFAIL+I

BY (FWDIU-PITSTK)* ROLSTK* YAWPED* (LAMROOT +

(LAMDIU + LAMOD) * DIUACT) / (FWDIU**2);

IF FWDIU > ROLSTK (* AFFECTED DIU HAS FAILED ROLSTK *)

TRANTO FWDIU=FWDIU-I, PITSTK=PITSTK-I,

YAWPED=YAWPED-l, ROOT=ROOT-l,

NFAIL=NFAIL+I

BY PITSTK* (FWDIU-ROLSTK)* YAWPED* (LAMROOT +

(LAMDIU + LAMOD) * DIUACT) / (FWDIU**2);

IF FWDIU > YAWPED (* AFFECTED DIU HAS FAILED YAWPED *)

TRANTO FWDIU=FWDIU-I, PITSTK=PITSTK-I,

ROLSTK=ROLSTK-I, ROOT=ROOT-l,

NFAIL=NFAIL+I

BY PITSTK* ROLSTK* (FWDIU-YAWPED)*

(LAMROOT + (LAMDIU + LAMOD) * DIUACT) / (FWDIU**2);

IF ROOT > FWDIU

(* AFFECTED CHANNEL HAS FAILED DIU *)

TRANTO ROOT=ROOT-I, NFAIL=NFAIL+I

BY (ROOT-FWDIU)* (LAMROOT + LAMOD*DIUACT);

(*** ELECTRIC POWER DISTRIBUTION FAILURES ***)

IF FTP > 0 AND PITREC = 0 AND ROLREC = 0 AND YAWREC = 0 AND FTPREC = 0

THEN

(* FAILURE AFFECTS DIU, FTP AND ROOT LINK *)

TRANTO FWDIU=FWDIU-I, PITSTK=PITSTK-I,

ROLSTK=ROLSTK-I, YAWPED=YAWPED-I, FTP=FTP-I, KOOT=KOOT-I,
NFAIL=NFAIL+I BY PITSTK*ROLSTK*YAWPED*

LAMEL / (FWDIU**2);

IF FWDIU > PITSTK (* AFFECTED DIU HAS FAILED PITSTK *)

TRANTO FWDIU=FWDIU-I,

ROLSTK=ROLSTK-I, YAWPED=YAWPED-l, FTP=FTP-I, ROOT=ROOT-l,
NFAIL=NFAIL+I

BY (FWDIU-PITSTK)*ROLSTK*YAWPED* LAMEL /

(FWDIU**2);

IF FWDIU > ROLSTK (* AFFECTED DIU HAS FAILED ROLSTK *)

TRANTO FWDIU=FWDIU-I, PITSTK=PITSTK-I,

YAWPED=YAWPED-l, FTP=FTP-I, ROOT=ROOT-l,
NFAIL=NFAIL+I

BY PITSTK*(FWDIU-ROLSTK)*YAWPED* LAMEL /

(FWDIU**2);

A-28

ENDIF;

IF FWDIU > YAWPED (* AFFECTED DIU HAS FAILED YAWPED *)

TRANTO FWDIU=FWDIU-I, PITSTK=PITSTK-I,

ROLSTK=ROLSTK-I, FTP=FTP-I, ROOT=ROOT-l,
NFAIL=NFAIL+I

BY PITSTK* ROLSTK* (FWDIU-YAWPED) *

LAMEL / (FWDIU**2);

IF ROOT > FWDIU

(* AFFECTED CHANNEL HAS FAILED DIU *)

TRANTO FTP=FTP-I, ROOT=ROOT-I, NFAIL=NFAIL+I

BY (ROOT-FWDIU) * LAMEL;

IF FTP > ROOT (* AFFECTED CHANNEL HAS FAILED ROOT *)

TRANTO FTP=FTP-I, NFAIL=NFAIL+I

BY (FTP-ROOT)* LAMEL;

A-29

(***

(*
(*

Mid Area Model - Safety Criteria - Bus Option

Group A

***)

*)
*)

SPACE = (DU_9_YI:

MIDDIU:

GYRO:

GYKEC:

ACCEL:

ACCREC:

CNDP :

CNDV:

HYD :

ELMC :

NFAIL:

0. Ir

0. 4,

0. 8,

0. 2,

0. 8,

0. 2,

0. 4,

0. 4,

0. 2,

0. 4,

0. 4);

(* MID DIU STATE INDICATOR

(* GYROS

(* GYRO RECOVERY INDICATOR

(* ACCELEROMETERS

(* ACCEL RECOVERY INDICATOR

(* CND CHANNEL STATE

(* CND VALVE STATE

(* HYDRAULIC SYSTEM STATE

(* ELMC STATE INDICATOR

(* NO. OF FAILED ELEMENTS

START = (0, 4, 8, 0, 8, 0, 4, 4, 2, 4, 0);

PRUNEIF NFAIL > 2;

DEATHIF GYRO-GYREC < 3 OR ACCEL-ACCKEC < 3;

DEATHIF CNDV = 0;

LIST = 2;

TIME = 3.0;

PRUNE = 1.0E-16;

ECHO = 0;

POINTS = 6;

LAMGYRO = 50.0E-6;

LAMACC = 30.0E-6;

LAMNOD = 15.0E-6;

LAMDIU = 15.0E-6;

GYRMEAN = 3.0E-4;

GYRSTD = 1.0E-4;

ACCMEAN = 3.0E-4;

ACCSTD = 1.0E-4;

(* GYRO FAILURE RATE *)

(* ACCELEROMETER FAILURE RATE *)

(* NODE FAILURE RATE - CONDITIONED *)

(* DIU FAILURE KATE - CONDITIONED *)

(* RECOVERY TIME MEAN *)

(* RECOVERY TIME STD DEV *)

(* ACC RECOVERY TIME MEAN *)

(* ACC RECOVERY TIME STD DEV *)

LAMC = 50.0E-6;

LAMPOS = 10.0E-6;

LAMV = 15.0E-6;

VJAM = 3.3333E-5;

LAMBYD = 45.0E-6;

(* PROCESSOR FAILURE BATE *)

(* POSITION SENSOR FAILURE RATE *)

(* VALVE GROUP FAILURE KATE *)

(* ACTUATOR JAM FAILURE FRACTION *)

(* HYDRAULIC SYSTEM FAIL RATE *)

LAMPS = I0.0E-6;

LAMEL = 50.0E-6;

NWMEAN = 3.0E-4;

NWSTD = I. 0E-4;

LAMON = 255.0E-6;

LAMFTP = 200.0E-6;

LAMROOT = 15.0E- 6;

LAMOD = 127.5E-6;

(* DIUACT = 0.i0; *)

(* LOCAL POWER SUPPLY - CONDITIONED *)

(* ELMC FAILURE BATE *)

(* NW RECOVERY TIME MEAN *)

(* NW RECOVERY TIME STD DEV *)

(* OTHER NODES FAILURE RATE *)

(* FTP CHANNEL FAILURE RATE *)

(* BUS INTERFACE FAILURE RATE *)

(* OTHER DIUS ON BUS FAILURE RATE *)

(* DIU ACTIVE FAILURE FRACTION

*)

*)
*)

*)

*)
*)

*)
*)

*)
*)

*)

A-30

(* GYRO SENSOR FAILURES AND RECOVERIES *)

IF GYRO > 0 AND GYREC = 0 AND ACCREC = 0 THEN

IF GYRO = 4 THEN (* EXHAUSTION *)

TRANTO GYRO = GYRO-I, GYREC--GYREC+I, NFAIL=NFAIL+I

BY GYRO*LAMGYRO;

ELSE

TKANTO GYRO = GYRO-I, NFAIL=NFAIL+I

BY GYRO*LAMGYRO;

ENDIF;

ENDIF;

(* ACCEL SENSOR FAILURES AND RECOVERIES *)

IF ACCEL > 0 AND GYREC = 0 AND ACCREC = 0 THEN

IF ACCEL = 4 THEN (* EXHAUSTION *)

TRANTO ACCEL = ACCEL-I, ACCREC=ACCREC+I, NFAIL=NFAIL+I

BY ACCEL*LAMACC;

ELSE

TRANTO ACCEL = ACCEL-I, NFAIL=NFAIL+I

BY ACCEL*LAMACC;

ENDIF;

ENDIF;

(*** ACTUATOR PROCESSOR GROUP FAILURE TRANSITIONS ***)

IF CNDP > 0 THEN

TRANTO CNDP=CNDP-I, NFAIL=NFAIL+I

ENDIF;

BY 2*CNDP*(LAMC + LAMPOS);

(*** VALVE GROUP FAILURES ***)

IF CNDV > 0 THEN

IF NFAIL = 0

TRANTO CNDV=0, NFAIL=NFAIL+I BY CNDV*VJAM*LAMV;

TRANTO CNDV=CNDV-I, NFAIL=NFAIL+I BY CNDV*(I.0-VJAM)*LAMV;

ENDIF;

(* HYDRAULIC SYSTEM FAILURES *)

IF HYD > 0 AND (HYD-NFAIL >= 0) THEN

TRANTO CNDV=CNDV-2, HYD=HYD-I, NFAIL=NFAIL+I

BY CNDV*(CNDV-I)*LAMHYD / (2* (2*HYD-I));

IF (2*HYD-CNDV) > 0

TKANTO CNDV=CNDV-I, HYD=HYD-I, NFAIL=NFAIL+I

BY (2*HYD-CNDV)*2*CNDV*LAMHYD / (2* (2*HYD-I));

IF (2*HYD-CNDV) > 1

TRANTO HYD=HYD-I, NFAIL=NFAIL+I

BY (2*HYD-CNDV)*(2*HYD-CNDV-I)*LAMHYD / (2* (2*HYD-I));

ENDIF;

A-31

(* MID DIU FAILURES *)

IF MIDDIU > 0 AND GYKEC = 0 AND ACCREC = 0 THEN

TRANTO MIDDIU=MIDDIU-I, GYRO=GYRO-2, ACCEL=ACCEL-2, CNDP=CNDP-I,

NFAIL=NFAIL+I BY GYRO* (GYRO-I)* ACCEL* (ACCEL-I)* CNDP*

(LAMDIU + LAMPS)/ (2* (2*MIDDIU)*

(2*MIDDIU-I)**2 *MIDDIU);

IF 2*MIDDIU - GYRO > 0 (* DIU HAS FAILED GYRO *)

TRANTO MIDDIU=MIDDIU-I, GYRO=GYRO-I, ACCEL=ACCEL-2, CNDP=CNDP-I,

NFAIL=NFAIL+I BY 2*GYRO* (2*MIDDIU-GYRO)* ACCEL* (ACCEL-I)* CNDP*

(LAMDIU + LAMPS)/ (2* (2*MIDDIU)*

(2*MIDDIU-I)**2 *MIDDIU);

IF 2*MIDDIU - ACCEL > 0 (* DIU HAS FAILED ACCELEROMETEK *)

TRANTO MIDDIU=MIDDIU-I, GYRO=GYRO-2, ACCEL=ACCEL-I, CNDP=CNDP-I,

NFAIL=NFAIL+I BY GYRO* (GYRO-I)* 2*ACCEL* (2*MIDDIU-ACCEL)* CNDP*

(LAMDIU + LAMPS)/ (2* (2*MIDDIU)*

(2*MIDDIU-I)**2 *MIDDIU);

ENDIF;

IF MIDDIU - CNDP > 0 (* DIU HAS FAILED CND PROCESSOR *)

TRANTO MIDDIU=MIDDIU-1, GYRO=GYRO-2, ACCEL=ACCEL-2,

NFAIL=NFAIL+I BY GYRO* (GYRO-I)* ACCEL* (ACCEL-I)* (MIDDIU-CNDP)*
(LAMDIU + LAMPS)/ (2* (2*MIDDIU)*

(2*MIDDIU-I)**2 *MIDDIU);

(* BUS CENTRAL FAILURES - NOT COMMON TO FOR MODEL *)

IF MIDDIU > 0 AND GYREC = 0 AND ACCREC = 0 THEN

TRANTO MIDDIU=MIDDIU-I, GYRO=GYRO-2, ACCEL=ACCEL-2, CNDP=CNDP-I,

NFAIL=NFAIL+I BY GYRO* (GYRO-I)* ACCEL* (ACCEL-I)* CNDP*

(LAMKOOT+ (LAMOD)*DIUACT) /

(2* (2*MIDDIU)* (2*MIDDIU-I)**2 *MIDDIU);

IF 2*MIDDIU - GYRO > 0 (* DIU HAS FAILED GYRO *)

T_O MIDDIU=MIDDIU-I, GYRO=GYRO-I, ACCEL=ACCEL-2, CNDP=CNDP-I,

NFAIL=NFAIL+I BY 2* GYRO* (2*MIDDIU-GYRO)* ACCEL* (ACCEL-I)*

CNDP* (LAMROOT+ (LAMOD)*DIUACT) /

(2* (2*MIDDIU)* (2*MIDDIU-I)**2 *MIDDIU);

IF 2*MIDDIU - ACCEL > 0 (* DIU HAS FAILED ACCELEROMETER *)

TRANTO MIDDIU=MIDDIU-I, GYKO=GYRO-2, ACCEL=ACCEL-I, C:DP=CNDP-I,

NFAIL=NFAIL+I BY GYRO* (GYRO-I)* 2* ACCEL* (2*MIDDIU-ACCEL)*

CNDP* (LAMROOT+ (LAMOD)*DIUACT) /

(2* (2*MIDDIU)* (2*MIDDIU-I)**2 *MIDDIU);

IF MIDDIU - CNDP > 0 (* DIU HAS FAILED CND PROCESSOR *)

TKANTO MIDDIU=MIDDIU-I, GYRO=GYRO-2, ACCEL=ACCEL-2,

NFAIL=NFAIL+I BY GYRO* (GYRO-I)* ACCEL* (ACCEL-I)* (MIDDIU-ChUP)*

(LAMROOT+ (LAMOD)*DIUACT) /

A-32

ENDIF;

(2* (2*MIDDIU)* (2*MIDDIU-I)**2 *MIDDIU);

(* CENTRAL FAILURES - INCLUDES ELEMENTS COMMON TO FOR MODEL *)

IF ELMC > 0 AND GYREC = 0 AND ACCKEC = 0 THEN

TRANTO MIDDIU=MIDDIU-I, GYRO=GYRO-2, ACCEL=ACCEL-2, CNDP=CNDP-I,

ELMC=ELMC-I, NFAIL=NFAIL+I BY GYRO* (GYRO-I)* ACCEL* (ACCEL-I)* CNDP*

(LAMFTP + nAiL) /

(2* (2*MIDDIU)* (2*MIDDIU-I)**2 *MIDDIU);

IF 2*MIDDIU - GYRO > 0 (* DIU HAS FAILED GYRO *)

TRANTO MIDDIU=MIDDIU-I, GYRO--GYRO-I, ACCEL=ACCEL-2, CNDP=CNDP-I,

ELMC=ELMC-I, NFAIL=NFAIL+I BY 2* GYRO* (2*MIDDIU-GYRO)* ACCEL*

(ACCEL-I)* CNDP* (LAMFTP + LAMEL) /

(2* (2*MIDDIU)* (2*MIDDIU-I)**2 *MIDDIU');

IF 2*MIDDIU - ACCEL > 0 (* DIU HAS FAILED ACCELEROMETER *)

TRANTO MIDDIU=MIDDIU-I, GYROsGYRO-2, ACCEL=ACCEL-I, CNDP=CNDP-I,

ELMC=ELMC-I, NFAIL=NFAIL+I BY GYRO* (GYRO-I)* 2* ACCEL*

(2*MIDDIU-ACCEL)* CNDP* (12LMFTP + LAMEL) /

(2* (2*MIDDIU)* (2*MIDDIU-I)**2 *MIDDIU);

IF MIDDIU - CNDP > 0 (* DIU HAS FAILED CND PROCESSOR *)

TRANTO MIDDIU--MIDDIU-I, GYRO--GYRO-2, ACCEL=ACCEL-2, ELMC=ELMC-I,

NFAIL=NFAIL+I BY GYRO* (GYRO-I)* ACCEL* (ACCEL-I)* (MIDDIU-CNDP)*

(LAMFTP + LAMEL) /

(2* (2*MIDDIU)* (2*MIDDIU-I)**2 *MIDDIU);

IF ELMC - MIDDIU > 0 (* CHANNEL HAS FAILED DIU *)

ENDIF;

TRANTO ELMC=ELMC-I, NFAIL=NFAIL+I BY (ELMC-MIDDIU)*LAMEL;

A-33

(***

(*
(*

Wing and Tail Area Model - Safety Criteria - Bus Option

Group A

***)

*)
*)

SPACE = (DU_a_YI: 0

DUMMY2 : 0

RWP : 0

RWV: 0

LWP : 0

LWV: 0

TLP : 0

TLV : 0

HYD : 0

BUS : 0

NFAIL: 0

if

I,

4, (* RW CHANNEL STATE *)

4, (* RW VALVE STATE *)

4, (* LW CHANNEL STATE *)

4, (* LW VALVE STATE *)

4, (* TL CHANNEL STATE *)

4, (* TL VALVE STATE *)

2, (* HYDRAULIC SYSTEM STATE *)

4, (* CENTRAL BUS STATE *)

4); (* NO. OF FAILED ELEMENTS *)

START = (0, 0, 4, 4, 4, 4, 4, 4, 2, 4, 0);

PRUNEIF NFAIL > 2;

DEATHIF RWV = 0;

DEATHIF LWV = 0;

DEATHIF TLV = 0;

LIST = 2;

TIME = 3.0;

PRUNE = 1.0E-16;

ECHO = 0;

POINTS = 6;

LAMC = 50.0E-6;

LAMPOS = 10.0E-6;

LAMSD = 20.0E-6;

LAMV = 15.0E-6;

VJAM = 3.3333E-5;

LAMNODH = 37.5E-6;

LAMDIUH = 37.5E-6;

LAMHYD = 45.0E-6;

LAMPSH = 25.0E-6;

LAMEL = 50.0E-6;

NWMEAN = 3.0E-4;

NWSTD = 1.0E-4;

LAMON = 60.0E-6;

LAMOD = 30.0E-6;

LAMFTP = 200.0E-6;

LAMROOT = 15.0E-6;

(* DIUACT = 0.I0; *)

(* PROCESSOR FAILURE RATE *)

(* POSITION SENSOR FAILURE RATE *)

(* SERVODRIVE GROUP FAILURE RATE *)

(* VALVE GROUP FAILURE RATE *)

(* ACTUATOR JAM FAILURE FRACTION *)

(* NODE FAILURE RATE - HARSH *)

(* DIU FAILURE RATE - HARSH *)

(* HYDRAULIC SYSTEM FAIL KATE *)

(* LOCAL POWER SUPPLY RATE - HARSH *)

(* ELMC FAILURE RATE *)

(* NW RECOVERY TIME - MEAN *)

(* NW RECOVERY TIME - STD DEV *)

(* OTHER NODE FAILURE RATE *)

(* OTHER DIUS ON 1 BUS FAIL RATE *)

(* FTP CHANNEL FAILURE RATE *)

(* BUS INTERFACE FAILURE RATE *)

(* DIU ACTIVE FAILURE FRACTION *)

A-34

(*** RW PROCESSOR GROUP FAILURE TRANSITIONS ***)

IF RWP > 0 THEN

TRANTO RWP=RWP-I, NFAIL=NFAIL+I

ENDIF;

(*** RW VALVE GROUP FAILURES ***)

IF RWV > 0 THEN

IF NFAIL = 0

ENDIF;

BY 2*RWP*(LAMC + LAMPOS);

TRANTO RWV=0, NFAIL=NFAIL+I BY RWV*VJAM*LAMV;

TRANTO RWV=RWV-I, NFAIL=NFAIL+I BY RWV*(I.0-VJAM)*LAMV;

(* RW DIU FAILURES *)

IF RWP > 0 THEN

TRANTO RWP=RWP-I, NFAIL=NFAIL+I BY RWP*(LAMDIUH*

(I.0-DIUACT) + LAMPSH);

ENDIF;

(*** LW PROCESSOR SROUP FAILURE TRANSITIONS

IF LWP > 0 THEN

TRANTO LWP=LWP-I, NFAIL=NFAIL+I

ENDIF;

(*** LW VALVE GROUP FAILURES ***)

IF LWV > 0 THEN

IF NFAIL = 0

ENDIF;

***)

BY 2*LWP* (LAMC + LAMPOS);

TRANTO LWV=0, NFAIL=NFAIL+I BY LWV*VJAM*_;

TKANTO LWV=LWV-I, NFAIL=NFAIL+I BY LWV* (I.0-VJAM) *LAMV;

(* LW DIU FAILURES *)

IF LWP > 0 THEN

TRANTO LWP=LWP-I, NFAIL=NFAIL+I

(I.0-DIUACT) + LAMPSH);

ENDIF;

BY LWP*(LAMDIUH*

(***

IF TLP > 0 THEN

TRANTO TLP=TLP-I, NFAIL=NFAIL+I

ENDIF;

(*** TL VALVE GROUP FAILURES ***)

IF TLV > 0 THEN

IF NFAIL = 0

TRANTO TLV=0, NFAIL=NFAIL+I BY TLV*VJAM*LAMV;

TL PROCESSOR GROUP FAILURE TRANSITIONS ***)

BY 2*TLP* (LAMC + LAMPOS);

A-35

TRANTO TLV=TLV-I, NFAIL=NFAIL+I BY TLV* (I. 0-VJAM) *LAMV;

ENDIF;

(* TL DIU FAILURES *)

IF TLP > 0 THEN

TRANTO TLP=TLP-I, NFAIL=NFAIL+I

(I.0-DIUACT) + LAMPSH);

ENDIF;

BY TLP* (LAMDIUH*

(* HYDRAULIC SYSTEM FAILURES *)

IF HYD > 0 AND (HYD-NFAIL >= 0) THEN

TRANTO RWV=RWV-2, LWV=LWV-2, TLV=TLV-2, HYD=HYD-I, NFAIL=NFAIL+I

BY RWV* (RWV-I) *LWV* (LWV-I) *TLV* (TLV-I) *LAMHYD /

(2* (2*HYD)**2 * (2*HYD-I)**3) ;

IF (2*HYD-RWV) > 0 THEN

TRANTO RWV=RWV-I, LWV=LWV-2, TLV=TLV-2, HYD=HYD-I, NFAIL=NFAIL+I

BY (2*HYD-RWV)*2*RWV*LWV*(LWV-I)*TLV*(TLV-I)*LAMHYD /

(2* (2*HYD)**2 * (2*HYD-I)**3);

ENDIF;

IF (2*HYD-LWV) > 0 THEN

TKANTO RWV=RWV-2, LWV=LWV-I, TLV=TLV-2, HYD=HYD-I, NFAIL=NFAIL+I

BY RWV*(RWV-I)* 2*LWV*(2*HYD-LWV)* TLV*(TLV-I)*LAMHYD /

(2* (2*HYD)**2 * (2*HYD-I)**3);

ENDIF;

IF (2*HYD-TLV) > 0 THEN

TRANTO RWV=RWV-2, LWV=LWV-2, TLV=TLV-I, HYD=HYD-I, NFAIL=NFAIL+I

BY RWV*(RWV-I)* LWV*(LWV-I)* 2*TLV*(2*HYD-TLV)*LAMHYD /

(2* (2*HYD)**2 * (2*HYD-I)**3);

ENDIF;

ENDIF;

(**** BUS CENTRAL AND ELECTRIC POWER DISTRIBUTION ***)

IF BUS > 0 THEN

TKANTO RWP=RWP-I, LWP=LWP-I, TLP=TLP-I, BUS=BUS-I,

NFAIL=NFAIL+I BY RWP* LWP* TLP* (LAMROOT+LAMFTP+LAMEL+

(LAMDIUH+LAMOD) * DIUACT) / (BUS**2);

IF BUS - RWP > 0

TRANTO LWP=LWP-I, TLP=TLP-II BUS=BUS-I,

NFAIL=NFAIL+I BY (BUS-RWP)* LWP* TLP* (LAMROOT+LAMFTP+LAMEL+

(LAMOD) * DIUACT) / (BUS**2);

IF BUS - LWP > 0

TRANTO KWP=RWP-I, TLP=TLP-I, BUS=BUS-l,

NFAIL=NFAIL+I BY RWP* (BUS-LWP)* TLP* (LAMROOT+LAMFTP+LAMEL+

(LAMOD) * DIUACT) / (BUS**2);

A-36

IF BUS - TLP > 0

TKANTO RWP=RWP-I, LWP=LWP-I, BUS=BUS-I,

NFAIL=NFAIL+I BY RWP* LWP* (BUS-TLP)* (LAMROOT+LAMFTP+LAMEL+

(LAMOD) * DIUACT) / (BUS**2);

ENDIF;

A-37

A-38

APPENDIX B

D_q]_r SXMULA'J['XON MODEL

STVAX/BDSDO¢/AH0/1/14 2- 9

BUSMESSAG

B-1

DEFINITION DEVM BusMossAq;

EXPORT BusMHsageType*, M_sageType, NodeComnandType,

PortNameTyp_, IOActivityChoice,

PortStateType, PortE_ableRogisterType,

NodeMes sagoCoumandType,
NodeMe s sageRo sports eType, D IUConmandType,

M_aborOfPorts PerNode, NumberOfNodes,

MakeNodoConfigurat ionComaand, MakeMonitorCoanand;

CONST _rOfNodes - 18;

Nu_berOfPortaPerNode - 5;

TYPE

NodeC_nandl_pe

Po_ane_pe
PortStateType

PortEnabloReg£ sterType

- (ChangoPortEnable, Null);

- [i . • NumberOfPortsPorNode];

- (Enabled, Disabled);

- ARRAY PortNameTypo OF PortStateType;

NodeMessageCommandTypo - RECORD

CASE CoIBand : NodaCommandTyl_ OF

ChangePortEnablo :

PortEnableRogister : PortEnableRegisterType; i

Null :

END;

END;

NodeMQssageResponseType - RECORD

PortEnableRegister : PortEnableRegisterType;

END;

IOActivityChoice- (Input, Output, Grouped};

DIUCommandType - RECORD

Activity : 7OActivitychoice;
CoIBan_r : INTEGER;

END;

MessageType- (NodeInput, NodeOutput, DIUInput, DIUOutput};

BusMessageType - ENTITY

Address : INTEGER;

CASE Message : MessageType OF

Nodelnput :

Input

I NodoOutput :

Output

J DIUInput :

DIUCo_mand

I DIUOutput :

: N odeMes sageComman dType

: NodeMessageResponseType;

: DIUCommandType;

END;

B-2

EI_);

(* This procedure generates a node configurtion command so that it

can be sent to the network to modify a node's port enable register. *)

PROCEDURE MakeNodeConfigurationCo®mand (NodeAddress : INTEGY_.,R;

Configuration : PortEnableRegistarType)

: BusMessageType;

**

(* This procedure generates a node status command (i.s null comaand

to the node} to be used by the Network Manager to collect the

Network's Status. *}

PROCEDURE Mak_4onitorC_and (NodeAddress : INTEGER}

: BusMassagaType;

E_> BusMessag.

_3

BUSMESSAG

B-4

DEVM BusMessag;

EXPOSE

pROCEDURE MakeNodeConfi_urationCalland(NodaAddron : INTEGER;
Confi_ration : PortEnabl_isterType)

: Bus_s sageTy_;

V_ _d : Bus_ss_eType;
Portlndex : Port_4amoType;

BEGIN

NEW (C_mand) ;

C_mand ^ .Address :- NodeAddress;

Ccanand ^ .Message :- NodeInput;

C_a_d ^ .Input. Command :- ChangePortEnable;

FOR PortIndex :- 1 TO NumberOfPortsPerNode DO

C_mnand ^.Input.PortEnableReglster [PortIndex] :- Configuration [PortIndex] ;

E_D;

RET_ (Co,mind) ;

END MakeNodeCon flgurationCo_mand;

**

PROCEDURE MakeMonitorCom,aand(NodeAddress : INTEGZR)

: BusMessageType;

VAR C_d : BusMessagoTypa;

BEGIN

NEW (Command) ;

Comaand ^ .Address :- NodeAcldress;

C_and^ .Message :- NodeInput;

C_a_d ^ .Input. Command :- Null;

RETURN (Command) ;

END MakaMonit orCommand;

**

END;

BEGIN

END BusMessag.

_5

TYPECONST

B-6

DEFINITION MODULE TypeConst;

FROM BusMessag IMPORT PortNameType, NuaberOfNodes, NumberOfPortsPerNode;

EXPORT QUALIFIED NetworkElementType, ChannelIDType, PortArrayType,

NodeRecordType, PortRecord, NodeArra_rpe, StatusType,

PortConfigurationType, PortStatusRecord, PortStatusArray,

NodeStatusRecord, Ch_elStatusRecord, NodeStatusArray,

ChannelStatusArray, }hm_ezOfNotworks, NumberOf_OSPerChannel;

(* These decL1rations will need to be moved elsewhere when

a :ore appropiate home has been found for them. *)

CONST NuaberOfGPCS - 1;

NumberOfD IUS - 4;

NuaberOfNetworks - 2 ;

NumberOfIOSPerChannel - 3 ;

TYPE GPCAddressType - {I .. NumberOfGPCS] ;

ChannelIDType- (A, B, C);

DIUAddressType - [I .. NumberOfDIUS] ;

**

TYPE NetworEElementType- {GPC, Node, DIU, None);

NetworkElenentRocord - RECORD

CASE AdJacentElement : NetworkElementType OF

G_C:

G2CAddress : INTEGER;

Channel : ChannelIDType;

I Nods:

NodeNumber : INTEGER;

NodeAddress : INTEGER;

Por_ : PortNa_eType;

I DIU:

DIUAddress : INTEGER;

I None :

END;

END;

PortRecord - RECORD

Element : NetworkElementRecord;

END;

PortArrayType - ARRAY [1 .. NumberOfPortsPerNode] OF NetworkElementRecord;

NodeRecordType - RECORD

NodeAddress : INTEGER;

PortArray : PortArrayType;

END;

NodeArrayType- ARRAY 11 .. NumberOf_odes_ OF NodeRecordType;

**

(* The types pertain to the Network Manager malntaining the status
of the Network. *)

StatusType- (Idle, Active, Failed};

_7

PortConfigurationType- (Inboard, Outboard);

PortStatusRecord - RECORD

CASE Status : StatusType OF

Active :

Direction : PortConfig_rationType;

J Idle, Failed:

END;

END;

PortStatusArray -ARRAY 11 .. NumberOfPortsPerNode] OF PortStatusRecord;

NodlStatueRecord - RECORD

Address : INTEGER;

Status : StatusType;

PortStatus : PortStatusArray;

E_;

ChannalStatusRecoEd - RECORD

-¢.Addzess : 1_1_'E_; (*_='_=CAdd=ess_.'ype;*)

ChannslID : ChannelIDTypQ;

Status : StatusType;

E_D;

NodeStatusArray - ARRAY (I .. NumberOfNodes] OF NodeStatusRecord;

ChannelStatusArray - ARRAY ChannellDType OF ChannelStatusRecord;

_onst.

_8

CENTRALDB

B-9

DEFINITION DEYM CentralDB;

FRON Bu_lag D_C_ PortNauoType, NumberOfPor_sPerNode, NumberOfNodes;

FRGM TypeConst IMPQRT NodeRecordTypa, NodeArrayType, NumberOfNetworks,

NumberOf 10SPerChannal;

EXPORT IOSConnactionType, _LateNodeData, Reac_odeInterConnections,

Finc_odeNumber, FindIOSConnections;

TYPE IOSConnectionRecord - RECORD

GPCAddree s : INTEGER;

NodeConnectedTo : INTEGER;

END;

IOSConnactionType - ARRAY [I .. NumberOfIOSPerChannel] OF IOSConnectionRecord;

**

(* This procedure will update on element of the data that represents

the interelement connection of the I/O Network. *)

PROCEDURE UpdateNodeData(NodeNumber : INTEGER;

NetworkID : INTEGER;

Data : NodeRacordType) ;

(* The procedure will return the internal data structure that each

AIPS nod8 has initialized with its own data. *}

PROCEDURE ReadNodeInterConnectlons (NetworkID ' INTEGER;

VAR Noc_Connectiona : NodeArrayType) ;

**

(* This procedure will search the Central Database for a node with

"Actress" as its node address and return its no_e number.

BEWARE: No check is done to see if the address given coressponda

to an address on youl network. If an address is given that

is not on your network, then the wrong number will he retruned. *)

PROCEDURE FindNodeNumber(Addrees : INTEGER} : INTEGER;

**

(* This procedure will search the Central Database an return all the

lOS connections for a the indicated network. An lOS which is not

installed will have a zero ID. *)

PROCEDURE FindIOSConnections (NetworkID : INTEGER;

VAR ConnectionArray : IOSConnectionType);

**

TYPE NetworkDescriptionType - ARRAY [i .. NumberOfNetworks] OF NodeArrayType;

VAR NetworkDescription : NetworkDescriptionType;

END CentralDB.

B-IO

CENTRALDB

B-11

DEVM CentralDB;

FRGM BusMessag IMPORT PortNsmeType, NumberOfPortsParNode, NumberOfNode8;

FRCN TypeConst I_ORT NodoRocordType, NetworkEl_ntType, ChannelIDTypa,

NodeArrayTypo, NumberOfNotworks, NumborOfIOSPorChannel;

EXPOSE

**

PROCXDURE UpdateNodQData (NodeNumber : INTEGER;

NetworkID : INTEGER;

Data : NodeRecor_Type) ;

VAR Portlndex : PortNameType;

NodeIndex : INTEGY_R;

CurrentNodoIndex : INTEGER;

Currant_Node : INTEGER;

BEGIN

W_TH NatworkDescription [NetworkID] [NodeN_mbar} DO

NodeAddrass "- Data.NodoAddres8;

FOR Portlndex :- i TO NumberOfPortsPerNode DO

CASE Data.PortArray [PortIndex] .AdJacentElmen_ OF

GPC:

PortArray[PortIndax] .AdJacantElomant :- G_C;

PortArrayIPortlndax] .G_CAddress :- Data.PortArray[Portlndex).GPCAddress;

PortArray[PortIndax] .Channel :- Data.PortArray(Por%Index] .Channel;

Node:

PortArray[PortIndex] .AdjacentElment :- Node;

PortArray[Portlndex] .NodeAddrass :- Data.PortArray[PortIndex] .NodeAddress;

PortArray[PortIndex] .Port :- Data.PortArray[PortIndex] .Port;

DIU :

PortArray[PortIndex] .AdJacantElemant :- DIU;

PortArray [Port Index]. DIUAddres s :- Data. Port.Array [Port Index]. DIUAddress;

None :

PortArray[PortIndex] .AdjacentElement :- None;

END;

END;

END;

(* Due to the nature of this DENET solution, the AIPS node numbers

of AIPS adjacent nodes cannot be sat when this proced_Lte

is called. To solve this probl _., the new information is entered,

(see above for loop) the database will be searchod and

correct node numbers entered. *)

FOR CurrentNodeIndex :- i TO NumberOfNodes DO

CurrentNoda :- NetworkDescriptionINetworkID] [CurrentNodeIndex] .
NodeAddress;

FOR NodeIndex :_ i TO NumberOfNodes DO

WITH NetworkDescription(NetworkID][NodeIndex] DO

IF (NodeAddress <> CurrentNode) THEN

B-12

FOR PortIndQx :- 1 TO NumberOfPortsPerNodo DO

IF (PortArray[PortIndex] .AdJacantElement -

Mode} AI_ (PortArray [Portlndex] .NodeAddress

- C_LrrentNode) TR_/

PortArray(Portlndex] .NodeNumber :-

CurrentNodeIndex;

END;

END;

END;

END;

DID;

PROCEDURE ReadNodelnterConnoctions (NetworkID : INTEGER;

VAR NodeCormections : NodeArral_pe);

VAR Nodelndex : INTEGZI%;

Portlndex : PortNameType;

BEGIN

FOR NodeIndex :- i TO N_ez'OfNodes DO"

NodoConnections (NodeIndex] .NodeAddress :-

NotworkDescription [NetworkID] [Nodelndox] .NodeAddress;

FOR Portlndex :- i TO N_mberOfPortsPorNode DO

WITH NetworkDoscription|NetworkID][Nodelndex].PortArray[PortIndex] DO

CASE AdJacentEl_nt OF

GPC:

NodeConn_tions[Nodelndex].PortArray[PortIndex].

AdJacentElment :- GPC;

N°deC°nnecti°ns[N°d°Index)'P°rtArray[PortIndex)'

GPC_idre88 :- GP_:l_ess;

NodeConnectlons(NodeIndex].PortArray(PortIndQx].

Channel :- Channel;

(Node:

NodoConnections[NodeIndex].PortArray[PortIndex].

AdJacenLElment :- Mode;

NodoConnectio.s(Nodelndex].PortArray(Portlndex].

NodoNumber :- NodeNumber;

NodoConnections[NodeIndex).Portkrray[Portlndex].

NodeAddress :- NodeAddress;

NodoConnections(NodeIndex].PortArrayIPortIndex].

Port :- Port;

I DIU:

NodeConnections[NodeIndex].PortArray{Portlndex].

AdjacentElment :- DIU;
NodeConnections(NodeIndex].PortArray(Portlndex].

DIUAddress :- DIU&ddress;

B-13

I None :

NodoConnections [NodoIndex] .PortArray [Portlndex].

AdJacentElement :- None;

END;

END;

END;

E_;

E_ ReadNode InterConnect ion s;

**

PROCEDURE FindNodeNumber(Address : INTEGER) :INTEGER;

VAR NetworkIndex : INTEGER;

NodeIndex : INTEGER;

BEGIN

FOR NetworkIndox :- i TO NumberOfNetworks DO

FOR NodeIndex :- I TO NmlberOfNodes DO

IF NetworkDescription [NetworkIndex] [NodeIndex] .NodeAddress

- Address TH_

RETURN (NodeIndex} ;

E_D;

_D;

RETU-_ (0) ;

END FindNodeNumber;

**

PROCEDURE FindIOSConnections (NetworkID : INTEGER;

VAR ConnectionArray : IOSConnectionType) ;

VAR Nodld_umber : INTEGER;

Counter : INTEGER;

Index : INTEGER;

Pot tIndex : Pot tNameType;

BEGIN

Counter :- I;

NodeNumber :- i;

WHILE NodeNumber <- NumberOfNodes DO

WITH NetworkDescription (NetworkID] tNodeNumbor] DO

FOR PortIndex :- i TO NumberOfPortsPerNode DO

IF PortArrey[PortIndex] .AdjacentElement - GPC THEN

ConnectionArray[Counter] .GPCAddress :- PortArray[Portlndex].

GPC&ddress ;

ConnectionArray[Counter] .NodeConnectedTo :- NodeNumber;

Counter :- Counter + i;

B-14

END;

NodeNumber :-NodeNumbor + I;

END;

END;

(* Set elements in connection array who do not have IOS's

conneatod to them to O. *)
IF Counter <- NumberOfIOSPerChannel THEN

FOR Index :- Counter TO NumberOfIOSPerChannel DO

ConnectionArray [Index] .GPCAddress :- 0;

END;

END;

END FindIOSConnections;

**

END;

EVENT Dum.y : INTEGER;

VAR PortIndex : PortNemeType;
Node Index : INTEGER;

NetworkIndex : INTEGER;

**

BEGIN

(* Initialize the Network Description so that all nodes are

connected to no elements as an initial state. *)

FOR Networklndex :- I TO NumberOfNetworks DO

FOR Nodelndex :- 1 TO NumberOfNodes DO

NetworkDescription [NetworkIndex] [NodeIndex] .NodeAddress := NodeZndex;

FOR PortIndex :- I TO NunbarOfPortsPorNode DO

NetworkDescription [NetworkIndex] [NodeIndex] .PortArray [Portlndex] .AdjacentElement

:_ None;

END;

END;

END;

LOOP

WAITUNTIL EVENT

Dummy: ;

END;

END;

END CentralDB.

B-15

AIPSNODE

B-16

DEVM AIPSNode;

FROM BusMossag REACH BusMossageTypo*;

FROM BusMossag IMPORT PortEnableRegisterType, PortNamoTypo,

NumborOfPortsPerNode, PortStateType, MossagaType,

FROM ContralDB I/_ORT UpdateNodeData;

FROM TypeConst IMPORT PortArraFType, PortRecord, getworkElmentType,

NodeRecordType, ChannelIDType;

(* This will allow the initialization of the database that will be

used by the notwork manager. The array im1_orted is from the

DENET Node Manager modulo, and it describes the intorconnections

of each instaaco of the DENET nodes. *)

FROM Node_4 IMPORT FindConnector;

INPUTS

EVENT NodoCcemandFrano : BusMessaqoTypo;

Reset : BOOLEAN;

PARA Net work_ID

NodLNunbor

SequenctrTimoLower

SoquancarT_U_r

InitialConfig_ration

: INTEGER;

: INTEGER;

: REAL;

: REAL;

: ARRAY [I .. Numbeu_OfPortsPerNode] OF BOOLEAN;

END;

0_TPUTS

VAR NodeResponsaFrame : BusMossageType;

END;

VAR MessageFromNetwork : BusMossageType;

PortEnableRoglstor : Pot tEnableRegist erTypo;

Port : Pot tNameTypo;

NodeData : NodeRecordType;

PortIndax : Pot tN_eType;

AdjacentNodeID : INTEGER;

AdjacentNodoType : _;

InPort : INTEGER;

OutPort : INTEGER;

**

(* This procedure ks responsible for transmitting traffic to the

network from the sequencer.

It consults the port activity register to determine if a port is

enabled, if it is, the message is transmitted to the network

fr_ that port. *)

PROCEDURE Transmit (Message : BusHess&ge_¥pe) ;

VAR StreAm : INTEGER;

SequencerTime : REAL;

Portlndax : PortNaaeTypo;

BEGIN

Stream :- 1;

(* Compute the Sequencer Response Time for this message. *)

SequencerT/me :- Randy(Stream, SequencerTimeLower, SequencerTimeUpper);

FOR Portlndox :- 1 TO OutArcs DO

(* Chock to see if this port is enabled. *)

IF PortEnableRegister[Portlndax] - Enabled THEN

8-17

AFTER SequencerTime outport [PortIndex] ^ .NodoResponseFrane <- Message;

END;

Eh_;

END Transn/t;

**

(* This procedure is responsible for processing network traffic received

on a port of this node and formatting a response for transnission

if one i8 required. *)

PROCED_ Sequencer (Command : BusMessageTypo);

VAR CcmaandRosponseFrame : BusMessageType;

Port Index : PortNameType;

BEGIN

(* Begin processing message. *)

(* Check to see if message is addressed to this node. *)

IF Coemand^.Address - MyNodeID THEN

(* Execute the command. *)

CASE Command^.Message OF

NodeInput : (* This is a cclmand from the

Network Manager. *)

(* Determine what the cowaand is. *}

CASE Command ^ .Input .Colnand OF

ChangePortEnable :

FOR PortIndex :- i TO NumberOfPortsPerNodo DO

PortEnableRegister [PortIndox] :-

Conand ^ .Input. PortEnableRogister [PortIndex] ;

END; I

Null: (* This is a do nothing command. *)

END;

NEW (CommuandRosponseFrame) ;

(* Format the response message. *)

WITH CoamandRasponseFrame ^ DO

Address :- MyNodeID;

Message :- NodeO_tpu_;

FOR PortIndex :- 1 TO N_u_berOfPortsPerNode DO

Output. Per t EnableRegister [Perr Index] :-

Per tEnableRegister [PortIndex] ;

END;

END;

(* Transmit the Node Resposne to the Network. *)

Transmit (CommandResponseFrame} ;

ELSE (* No node output message will ever be addressed

to a node. *)

END;

ELSE

B-18

Sequencer;

**

BEGIN

(* Initialize Port Array variable to all ports having no connection.

The InitiallzeDB EVENT will fill with the proper data. *)
FOR Port :- 1 TO NumberOfPortsPerNodQ DO

NodeData.PortArray [Port] .AdJacentElment :- None;

END;

(* Initialize the Database for the Network Manager that

describes the network interconnections for this node. *)

NodeData.NodeAddres$:- MyNodeID;

FOR Port :- 1 TO OutArcs DO

AdjacentNode ID :- GetOutNode (Port };

IF CheckNodeType(AdJacentNodeID, "IOS", TRUE) THEN

NodeData.PortArray[Port].AdJaoentElement :- GPC;

NodaData.PortArray[Port] .GPCAddreas :- AdJaoantNodeID;

NodeData.PortArrayIPort] .Channel :- A;

ELSIF CheckNodeType(AdJacentNodeID, "AIPSNode", TRUE) THEN

NodeData.PortArray (Port]. AdJacentElanent :- Node;

NodeData.PortArrayIPort] .NodeAddress :- AdJacentNodeiD;

GetInOutPort {AdjacentNodeID, MyNodeID, OutPort, InPort) ;

NodeData.PortArray[Port] .Port :- OutPort;

ELSIF CheckNodeType(AdjacentNodeID, "DIU", TRUE) THEN

NodeData.PortArray[Port] .AdJacentElment :- DIU;

NodeData. PortArray [Port]. DIUAddress :- AdJacentNodeID;

ELSE

WriteString (ParamOur, "invalld node");

WriteLn (ParamOut) ;

END;

END;

(" Send the data to the database. *}

UpdateNodeData(NodeNl_mber, NetworkID, NodeData);

(* Load port enable register with intial configuration. *)

FOR PortIndex :- 1 TO NumberOfPortsPerNode DO

IF Init/a/ConfigurationIPortIndex] THEN

PortEnableRegister [Portlndax] :- Enabled;

ELSE

PortEnableRegister [Portlndax] :- Disabled;

END;

END;

**

B-19

LOOP

WAITUNTIL EVENT

NodeC_amandFrame •

MessageFrcaNetwork :- ActivePort^.NodoCommandFrame;

(* First check to see if this port i8 enabled, if so

then send traffic to other ports on this ,ode.

A digression from the AIPS Network Node has been

taken at this Point in the implementation.

The traffic is only sent to the ports on this node

that are enabled. This shifts the responsibility of

the Port to check to see if it is enabled before

transmitting, to the sender of the traffic. *)

(* Check to sea if the port the traffic ks received on

is envied. *)

IF PortYmableRegisterIActivePort^.index] - Enabled THEN

(* Send traffice to all other Ports on this node. *)
FOR Port :- i TO OutArcs DO

(* Do not retransmit on port which traffic

was rocievod *)

IF ActivLPort^.indox <> INTEG_R(Port) THXN

(* Transmit message beck to the network

only if the port is enabled. *)

IF PortEnablaRegistor[Port] - Enabled THEN

NOW outport [Port] ^.NOdeROsponseFr_ <-

Mes sageFromNetwork;

END;

END;

END;

(* Send message to Sequencer for Processing. *)

Sequencer (MessageFromNetwork) ;

I Reset :

(* Reload port enable register with intial configuration.
FOR PortIndox :- I TO NumberOfPortsPerNode DO

IF InitialConfiguration[PortIndex] THEN

PortEnableRegister [Portlndex] :- Enabled;

ELSE

PortEnabloRegister [Portlndex] :- Disabled;

END;

END;

END;

END;

END AIPSNode.

,)

B-20

DIU

B-21

DEVM DIU;

FROM BusMenag REACH Bus_ssageType*;

FROM BusMessag IMPORT MessageType, DIUCaamandType, IOActivityChoice;

nqPUTS

EVENT

DIUCommandFrame : BusMessageType;

PARA OverheadTime : REAL;

C_dTimes : ARRAY[I .. 3] OF REAL;

END;

OUTPUTS

VAR DIURosponsoFrame : BusMessageType;

END;

VAR Comnand : BusMossageType;

Response : BusMessageType;

DIUCo_teTime : REAL;

DIUEnd_ransmissionTimo : REAL;

BEGIN

LOOP

WAITUNTIL EVENT

D IUC_andFramo :

Cculand :- kctiviPort ^ .DIUComhand_Eame;

IF Conmand^.Addross - MyNodeID THEN

WITH Ccamand^.DIUCo,.nand DO

IF Activity - Input THEN

DIUComputeTime :- CumJ_andTimos [Command_] ;

ELSIF Activity - Output THEN

DIUComputeTime :- 0.0;

ELSE (* Actvity - Grouped *)

DIUComputeTime :- CommandTimes [Cc_mandNumber] ;

END;

END;

IF Com_Ind^.DIUCom_and.Activity o Output THEN (* no response for a write *)

NEW (Response) ;

WITH Response ^ DO

Address :- MyNode ID;

Message :- DIUOutput;

END;

DIUEndTransmissionTime :-DIUComputeTime + OverheadTime

+ Random(l, 0.0, 0.000010);

AFTER DIUEndTransmissionTimo outport I1]^ .DIUResponseFrame <- Response;

END;

END;

_22

END;

END;

END DIU.

8-23

lOS

B-24

DEFINITION DE_ IOS;

FRCM BusMessag REACH BusMessageType*;

FRCM TypeConst D_ORT NumberOflOSPerChannol, NuaberOfNetworks;

EXPORT IOSRecordType, I_SRecordTypePolnter, ChalnTypo*,

TimeOu t IndicatorType, TransactionQuouoType,

TransactionType*, InputFrameOue.oType,

InputYraaeType*, ChalnStatusData*, TransactlonTurnAroundTimo;

TYPE lOSRecordType -RECORD

NetworkID : INTEGER;

IOSID : INTEGZR;

Number : INTEGER;

END;

IOSRecordTypePointer - POINTER TO lOSRecordType;

TineOutIndicatorType- _ormalcaapletion, TimedOut);

TranaactionType - _TITY

Identifier : INTEGER;

TimeOutValue : REAL;

OutputYraae : BusMessageType;

END;

TransactionQueueType - Q_TEUE OF TransactionType;

ChainType - ENTITY

Chainldentifler : _;

NtmberOfTransactions : _;

NetworkToBeExecutedOn : INTEGER;

TtansactionOuoue : TransactionQueueType;

FrameCount : INTEGER;

E_D;

InputFrameType - ENTITY

Transactionldentifier : _;

Mess ageAddress : _;

CASE TransactionTimeOutlndicator : TimeO_tIndicatorType OF

NormalComplotion :

InputFrame : BusMessageType;

1 TiledOut :

END;

Eh_;

InputFrauoOueueType - QUEUE OF InputFrameType;

ChainStatusData - ENTITY

ChainTimeOutIndicator : ThaeOutIndicatorType;

AllFailed : BOOLEAN;

AnyFailed : BOOLEAN;

InputFrameQueue : InputYrameQueueType;

END;

CONST TransactionTurnAroundTime - 0.000010;

_25

ZI_ IOS.

B-26

IOS

B-27

DL_'M I05;

FROM _sMAss&g _ BusKIssageT_e*;

FRCM BusMessag IMPORT Porr/qameType, MossageType, lOActivityChoice,

NodeCommandTy_, NumberOfPor tsPerNode;

FROM Controls REACH SysteaProbe, NumberOfProbes;

FROM Senddata IMPORT WrlteDataElamentType, DataZlementType,

FrequencyType, CyclicDataType, CyclicVariatlonType,

NonCyclicVariat ionType, ChainStateType;

INPUTS

EVENT inputTransaction : BusMessageType;

ChainToProcass : ChainTypm;

St opChain : BOOLEAN;

Roset : BOOLEAN;

ProbeResot : BOOLEAN;

PARA NetworkID : INTEGER;

RootNodeID : _;

IOService ID : INTEGZR;

NodeComnandBitsOnBua : REAL;

NodeRosponseBit sOnBus : REAL;

DIUIBitsOnBus : REAL;

ApplicationTransmitBits : ARRAY[1 .. 3], I0 .. 9] Cf REAL;

AppllcationRespons_Bits : ARRA¥[I .. 3], [0 .. 9] OF REAL;
ProbeNmnber : INTEGER;

END;

OUTPUTS

VAR OutputTransactlon : BusMusageType;

lOChainReaponse : ChainStatusData;

ChainFi,ished : BOOLEAN;

END;

EVENT

EndIOActivity : BOOLEAN;

TransactionTimeOut : BOOLEAN;

DIUWritten : BOOLEAN;

CONST DataExchangeQuantity

VAR

- 2.0; (* bytes per exchange *}

Trans&ctionT%trnAroundTime - 0.000010;

Max TransactioneInChain - I0;

ChaisUnderExecution : ChainType;

TransactionOnderExecution : TransactionTypo;

ResponseChain : ChainStatusData;

NetworkInput : InputFrameType;

BitTimeForResponse : REAL;

NumberOfTransactions : INTEGER;

TransactionTimeOutNotice : EventPointer;

NetworkPort : INTEGER;

IOServicePort : INTEGER;

TiapTime : REAL;

Start IODataElement : DataEl_ntType;

EndIODataElement : DataElmontType;

ChainStatus : ChainStateType;

PROCEDURE ComputeTransmissionBitTime(Transaction : TransactionType;

ChainID : INTEGER} : REAL;

VAR BitTime : REAL;

BEGIN

B-28

WITH Transaction ^ DO

CASE OutputFrane ^ .Message OF

NodaInput:

BitT/me :- NodeCcamandBitsOnBus;

DIUInput :

IF OutputFrame^.DIUCcumand.Activlty <> Input THEN

BitTine :- ApplicatlonTraneaitBlts [ChainID, (Identifier MCO Max_TransactionsInChaln)] ;

ELSE

BitTime :- DIUIBitsOnBus;

END;

END;

END;

RETURN (BitTine) ;

END ComputeTran 8sissionBitTi_o;

**

PROCEDURE ComputeRosponsoSltTime (Transaction : TransactlonType;

ChainID : INTEG_) : REAL;

VAR BitTime : REAL;

BEGIN

WITH Transaction ^ DO

CASE OutputFrame ^ .Message OF

Node Input:

BitTime :- NodeResponseBitsOnBus;

I DIUInput :

BitTime :- ApplicationResponsaBits [ChalnID, (Identifier MOD __TransactionsInChain}];

END;

END;

RETURN (BitTimo) ;

END ComputeRespons oBit Time;

**

(* This procedure _akos the next transaction from the Chain Currently

Executing and sends it to the network. It also d6cra-onts the

transactions left to execute for this chain counter, and schedules

the timeout event for this transaction. *}

PROCEDURE ProcessTransaction (PreviousTransaction : BOOLEAN;

Previous InputFr ame : InputFramaType;

Chain : Cha/nType;

VAR TransactlonExecutlng : TransactlonTypo;

VAR TraneactlonsLeftToExocute : INTEGER;

VAR ResponseBitTiBe : REJLL};

VAR Next_ssageBitTime : REAL;

TransactionOutputTime : REAL;

_29

BEGIN

(* Calculate the bits on the bus t/me for the previous transaction. *)

IF PreviousTransaction THl_q

(* Cc_ute the noxE transaction, s_d it to the network and

schedule its timeout event. *)

TraneactionExecuting :- QSucc (TransactionExecuting, Chain ^ .TransactionQueue) ;

(* Bit Time to transmit the next message. *)

Nex_MessageBitTime :- ComputeTransmissionBitTimo (TransactionExecuting,

(Chain ^ .ChainIdentifier MOO 4)} ;

TransactionOutputTime :- ResponsoBitTime + TransactionTurnAroundTime +

NextMessagaBitTime;

ELSE

(* C_ute the next transaction, send it to the network and

Jchedule its timeout event. *)

Tra_actlonExecuting :- FirstQ(Chain ^.TransactiouQueue) ;

Nex_lqes sagoBitT/me :- ComputeTransmis sionBitTime (Transact ionExecut ing,

(Chain ^ .Chainldentifier MC_ 4}} ;

TransactionOutputTime :- NextMessageBitTime;

E_D;

(* Decr_nt transactions left to process counter. *)

TransactionsLeftToExecuto :- TransactionsLeftToExocute - I;

WITH TransactionExocuting ^ DO

REPORT "%d" Identifier TAGGED "Transaction started Execution.";

AFTER TransactionOutputTime outport [NetworkPort] ^.OutputTransaction <- Outputlrrame;

IF (OutputFrame^.Message- DIUInput) AND

(OutputFramo^.DIUComm_nd.Activlty = Output) THEN

AFTER NextMessageBitTime DIUWritten <- TRUE;

ELSE

(* Schedule Transaction timeo_t. *}

ResponseBitTime :- ComputeResponseBitTime (TransactiorLExocuting,
(Chain ^.Chainldentifier MOO 4));

AFTER (TimeOutValue + TransactionOutputTime) TransactionTimeOut <- TRUE;

TransactionTimaoutNotice :- CurrentNotice;

END;

END;

_D ProcessTransaction;

**

BEGIN

NetworkPort :,- GetO_tPort (RootNodeID) ;

IOServicePort :- GetOutPort (iOServiceID) ;

LOOP

NAITUNTIL (ChainToProcoss, ProbeReset, Reset)

**

(* This event handles the Chain Loading mechanism from

the I/O Request Processing. First it sets Chain Finished

to FALSE and the pointer to the first input frame to nil,

then it a¢cumalates some time

to represent the loading of the chain into the IOS,

B-30

schedules the chain tiaeout event, initailzos the

Network Chain Data so that the Input Frames can be

processed as they are received, sends the first

transaction to the not_ork, and schedules the

transaction tiaeout for the first transaction. *}

ChainToProcess :

IF NetworkID - 1 TEEN

SAMPLE 1.0 WITH SysteaProbe[ProbeNumber] ;

(* Create memory for local copy of the responses

for this chain. *)

NEW(ResponseChain) ;

ResponsoChain^.AllFailtd :,, TRUE;
ResponseChain^.AnyFailed :- FALSE;

ResponseChain ^ .InputFrameQueue :- InitQ ("InputFrameQueue", FALSE, 0) ;

(* Make the response available to the I/O Syste_ Service.

This makes the chain response data immediately availablo

by keeping the data on the port.

This will allow the I/O System Service to start reading

the Ins when a chain has timed out. *)

NOW outport [IOServicePort] ^.IOChainResponse <- ResponseChain;

ChalnUnderExecution :- ActivePort^.ChainToFrocoss;

(* Record start I/O activity data collection event.

Increaent the proper frame counter. *)
StartI_)ataEleaent. SimulationTime :- clock;

IF ChainUnderExecution^.ChainIdantifier < 20 THEN

Start IODataEl-sent. Frequency :- Cyclic;

Start1ODa_Element.CyclicData.FrameCount :- ChainUnderExecution^.FrameCount;

CASE ChainUnderExecution^ .ChainIdentif ier OF

i:

StartIODataElamant.CyclicData.C_Variation :- StartNWiIOActivity;
Start IODataElement. Event ID :- 7;

2"

Start IODat_iElament. CyclicData. C_Variation :- StartNWl lOActivlty;
Star t IODataElement. Event ID := 8;

3'

StartIODataElament.CyclicDate.C_Variation :- StartNWlIOActivity;
StartIODataEleaent.EventID :- 9;

StartIODataElement. CycllcData. C_Varlation :- StartNWl IActivity;
StartIODataElement.EventID :- 16;

StartlODataElament.CyclicData. CVarlatlon :- StartNWl IActivity;

Star tIODataElement. Event ID :- 17;

7:

Start1ODataElement.CyclicData.C_Variatlon :- StartNWIIActivity;

StartIOOat_sEleJent.EventID :- 18;

9"

StartIODataElament.CyclicData.C Variation := StartNWlOActivity;
St art iODataElement. Event ID :- 22;

I 10:

StartIOOataElement.CycllcData.C Varlatlon :- StartNNiOActivity;

Start IODataElement .Event ID :- 23;

i 11:

StartIODataElement. CycllcData. C_Variation :- StartNWlOActivity;
Star t IODataElement .EventID :- 24;

END;

ELSIF (ChainUndarExecution*.Chainldentifier >- 300) AND

(ChainUnderExocution^.ChainIdentifier <- 310)

Start IOOataEl_ent. Frequency "- NonCyclic;

StartIC_ataEl_ent.NonCyclicData.N_Variation :- ReconfigIOActivity;

Start IODataE l-_ent. Event ID :- 30;

IF (_etworkID- I} AND

(Cha/nUnderExecution ^.ChainIdentifier <- 20))

((NetworkID - 2} AND

(ChainUnderExecution^.ChalnIdentifier >- 300)) THEN

WriteDataElementType (Start IODataElement) ;

EMD;

REPORT "%d" ChainUnderExecution^.ChainIdentifier

TAGGED _Chain started Execution.";

TransactionUnderExecution :- FirstQ(ChainUnderExecution ^.

TransactionQueue) ;

NumberOfTransactions :- QSize (ChainUnderExecution ^.

TransactionQueue) ;

(* Initialize IOS to I/O Request processing so that

I/O Request does confuse previous chain completion

with this chain ccapletion on its first 2ms poll,

it this chain has not ccapleted. *}

NOW outport (IOServicePort] ^.ChainFinished <- FALSE;

(* Send out the first transaction. *)

ProcessTransaction(FALSE, NIL,ChainUnderExecution,

TransactiongnderExecution, NumberOfTransactions,

BitTimeForResponse};

LOOP

WAIT_IL (InputTransactlon, TraneactionTimeOut,

StopChain, DIUWritten, Reset, EudIOActivity, ProbeReset)

**

(* This event handles the Input Frames from the I/O Network.

It places the Input Data in the Input Frame, cancels the

the transaction timeout for this transaction, checks for

more frames to be processed for this chain, if so the
next transaction is sent to the network and the and the

transaction timeout is scheduled for the next transaction.

If no more transaction are to be processed for this chain,

the Chain Timeout event is canceled for this chain,
and then Chain Finished is set and the Network Chain Data

is sent to I/O Request Processing. *)

InputTransaction:

ResponseChain^.AllFailed :- FALSE;

NEW(NetworkInput};

(* Put Network Data in Input Frame. *)

B_2

(*

*)

WITH Notworklnput ^ DO

TransactionIdentifier :- TransactionUnderExecution ^ .

Identifier;

MessageAddres8 :- TransactionUnderExecution ^ .

OutputFramo ^. Address;

Tra_sactlonTimeOutIndicator :- NormalComplotion;

InputFr ane :- ActivoPort ^. InputTransaction;

END;

REPOItT "%d" Networklnput^.TransactionIdontifier

TAGGSD "Transaction c_pleted normally.";

INSERT Networklnput LAST IN ResponsoChain^InputFrameQueue;

QIneert (NetworkInput, RuponseChain ^ .InputFrameQuoue, FALSE) ;

(* Cancel Transaction Timoout for the just completed

transaction. *}

CANCEL TrensactlonTimeOutNotice;

(* Check for more transactions to process. *}

IF Nu_erOfTransactions - 0 THEN

ChainStatm8 :- CcapletedNor_ally;

(* Set ccapletion flaq of the I/O System

service.. *}

AFTER BitTiueForResponse + TransactionTurnAroundTime

EndIOActivity <- TRUE;

ELSE

ProcessTransaction (TRUE, NetworkInput,

ChalnUnderExecution,

TransactionUnderExecution, NumberOfTransaotions,

BitTimeForResponse);

END;

**

(* This event will handle the transaction ti_eout event.

It assigns transaction t/mecut in the Network Chain

data correspond/_g to this transaction. A check will

then be made for more transactions to bo processed for

this chain, if so the transaction timoout is scheduled

for the next transaction. If no more transactions are to

be processed for this chain, the Chain Ti_ecut event is

canceled for this chain, and then Chain Finished is sot and

the Network Chain Data is sent to the I/O Request Processing. *)

J TransactionTimeOut:

BitTimeForRosponse :- 0.0;

ResponseChain^.AnyFailod :-TRUE;

NEW(Notworklnput);

(* Put data in !nput Frame for this transaction indicating

that the current transaction ti_ out. *)

WITH NotworkInput ^ DO

TransactionIdentifier :- TransactionUnderExocution ^.

Identifier;

MessageAddross :- TransactionUnderExecution ^ .

OutputFrame^.Addroes;

TransactionTimeOutIndicator :- TimodOut;

END;

REPORT "%d" Networklnput^.TransactionIdentifier

TAG_ "Transaction timed out.";

8_3

(*

*)

(*

*)

(* Put Input Frlme on response queue. *}

INSERT NetworkInput LAST IN ResponseCha/n^.InputFrameQueue;

QInsert (NatworkInput, ResponseChain A. InputFrameQuoue, FALSE) ;

(* Check for more transactions to process. "7

IF NumberOfTransactions - 0 THEN

(* Set completion flag of the I/O System

service.. '7

ChainStatus :- CompletedNormally;

AFTER BitTimeForResponse + TransactionTarnAroundTime

EndIOActivity <- TRUE;

ELSE

Proces sTransaction (TRUE, Networklnput,

ChainUnderExecution,

TransactionOnderExecutlon, NumberOfTransactions,

BitTimeForResponse);

END;

**

(* This event handles a stop chain from the I/O System

Service when a chain ha,- timed out. This process
a_rk# the current transaction as tiled out and

prepares to receive the next chain. *}

I StopChain :

NEW (NetworkInput } ;

(* Put data in Input Frame for this transaction indicating

that the current transaction timed out. *}

WITH Networklnput ^ DO

TransactionIdentifier :- TransactionUnderExecution ^.

Identifier;

MessageAddress :- TransactionUnderExocution ^ .

Out-'putFzeme ^ . Address;
TransactionTimeOutIndicator :- TimedOut;

END;

{* Put Input Frame on response queue. *)

INSERT NetworkInput LAST IN ResponseChain ^ .InputFrameQueue;

QInsert (NetworkInput, ResponseChain ^.InputFrameQueue, FALSE) ;

ChainStatus :- timedout;

EXIT;

EndIOActivity:

IF NetworkID - i TH_N

SD_PLE 0.0 WITH SysteaProbe[ProbeNumber] ;

END;

NOW outport [IOServicePort]^.ChainFinished <- TRUE;

RE_ORT "%d, " ChainUndarExecution^.ChainIdentifier

TAGGED "End I/O Activity.";

(* Record end I/O activity data collection event. *)

EndIODataElement. SimulationTime :- clock;

IF ChainUnderExecution^.ChainIdentifier < 20 THEN

End IODat aE lament. Frequency :- Cyclic;

B_4

EndICOataElment.CyclicData.Fr_Count :- ChainUnderExecution ^ .FrameCount;

CASE ChainUnderExecutlon ^.ChainIdentifler OF

i:

XndIODataElement. CyclicData. C Variatlon :- EndNWI IOActivity;

Ym dI ODat aEluen t.Even t ID :- I0;

XndIODataElemmt.CyclicDat_x. 10ChainStatus :- ChainStatus;

12:

EndIODataElement. CyclicData, CVariatlon :- EndNWI IOActivity;

EndIODataEltment. Event ID :- 11;

EndIOOataElemeat .Cy¢licData. IOChainStatus :- ChainStatus_

13:

EndlODataElement.CyclicData. C Variation :- E_dNWlIOActivity;

EadIOOataElement .EventID :- 12;

E_dIODataElement. CycllcData. IOChainStatus :- ChainStatus;

15:

EndIODataElement. CyclicData. C Variation :- EndNWI IActivity;
EndIODataElement .EventID :- 19;

EndIODataElement.CyclicData. IChainStatus :- ChainStatus;

16:

EndIODataElement. CyclicData, C Variation :- Enc_lIActivlty;

EndlODataElement. Event ID :- 20;

EndIODataElement.CyclicData. IChainStatus :- ChainStatus;

17:

KudIODat aElement. CyclicOata. C_Var iation :- EndNWI IActivity;

EndIODataElement.EventID :- 21;

EndIODataElement.CyclicData. ICha/nStatus :- ChainStatus;

Jg:

EadIODataElement.CyclicOata.CVarlatlon :- Enc_qWIOAc tivlty;
EndIODataElement .EventID :- 25;

I i0:

EadIODataElement'CyclicOata'CVariati°n :- Enc_W10Aativity;
EndIODataElement. Event ID :- 26;

I ii:

EndIODataElement. CyclicData. C_Varlatlon :- EndNWIOActivity;
EndlODataElement .EventID :- 27 ;

END;

EL$IF {ChaiaUnderExecution^.ChainIdentifier >- 300) AND

(ChainUnderExecution^.Chainldentifier <- 310} THEN

EndIOOataElement. Frequency :- NonCyclic;

EndICOar_xE1ement.NonCyclicData.N_Variation :- ReconfigIOActivity;
EndIODataElement. Event ID :- 31;

END;

IF ((NetworkID - I} AND

(ChalnUnderExecution^,ChainIdentifier <- 20}) OR

((NetworkID - 2} AND

(ChainUnderExecution^.Cha/nIdentifier >- 300)) THEN

8_5

END;

I ProbaP_set :

WritaDataElmaentType (EndIODataElement) ;

END;

EXIT;

DIUNritten:

REPORT "%d" TransmctionUnderExecutlon ^ .IdQntlfier

TAGGED "DIU Output Transaction oomploted normally.";

(* Check for more transactions to process. *)

IF lqu_erOfTransaction8 - 0 TH_

REPORT "%d" ChainUnderExecution^.ChainIdantifier

TAGGED "O_tput Chain has c_letod execution.";

ChainStatus :- C,--pletedNormally;

IF NetworkID - I TH_

SAMPLE O.0 WITH SystemProbe [ProbeNu_r] ;

END;

(* Set completion flag of the I/O System service.. *}

AFTER TransaotlonT_rnAroundTime EndIOActivity <- TRUE;

ELSE

TransactionUnderExecution :- QSu¢c(TransactionUnderExecution,

ChainUndorExecution ^ .TransectlonQueue };

DEC (Nu®berOfTransmctlono };

WITH TransectionUnderExecution ^ DO

(* Hit T/me to transmit the next message. *)

TmepTimo :- ApplicationTransmitBits [ChainUnderExecutlon ^ .Cha/nIdentifier,

(Identifier MOO Max_TransactionsInChain}] ;

REPORT "%d" Identifier TAGGED "Transaction started Execution.";

AFTER TempTime outport INetworkPort] ^.OutputTransaotion <- OutputFrame;

AFTER TempTime DIUWritten <- TRUE;

END;

END;

Reset :

EXIT;

ProbeRaset :

IF NetworkID - I THEN

ClearProbe (Syst_robe IProbeN_r]);

SAMPLE I. 0 WITH SystamProbe [ProbeNumbor] ;

El_);

IF NetworkID - i THEN

ClearProbe (Syste_Probe [ProbeNumber]);

SAMPLE 0.0 WITH Systam2robe [ProbeNumber] ;

END;

J Reset:

8_6

END;

END;

_D IOS.

r

L

i

8-37

PROCESSOR

B-38

DETINITION DEVM Processor;

(* 1/27/88 PRB ack_d import of LONGREAL *)

FRQM Utll IR_C_T LONGREAL;

EXPORT ProceesingUnlt*;

(*

* a processing unit is an entity that contains information about processes

* which c_ete for the Processor.

*)
TYPE

ProcessingUnlt - ENTITY

Priority • INTEGER;

ProcessingRequired : REAL;

ProcessID : ARRAY 10 .. 31} OF CHAR;

Frame : INTEGER;

WrltoData : BOOLEAN;

ProcssngAfterBlock : REAL;

Data : ADDRESS;

ProcessingLeftToDo : REAL; (* don't touch *)

(* 1/27/88 PRB changed Started to type LONGREAL from REAL *)

StartQd : LONGREAL; (* don't touch *}

SendBackOutThisPort: INTEGER; {* don't touch *)

DataHritten : BOOLEAN; (* don't touch *)

m_D;

END Processor.

8_9

PROCESSOR

B-40

DEVMProoessor;

(* 1127188 PRB imported DFLoatReal *)

FRC_ Conversions IMPQRT DFloatToReal;

FROM Controls REACH SystemProbe, NumberOfProbes;

(* forces the denet compiler to read controls.ddef

FROM Senddata IMPORT WriteDataElementType, CyclicDataType, DataElementType,

CyclicVariationType, FrequencyType;

INPUTS

(* NOTICE that this is a REACH and not and I_ORT - this *)

*)

EVENT

SubaltProcos8 : ProcessingUnit; (* submit a process to the processor *}

StartSystam : BOOLEAN; (* start the system process running *)

Reset : BOOLEAN;

ProbeRaset : BOOLEAN;

PARA

SystemPriority : INTEGZR;

SystemProcessingNeodod : REAL;

Syst_mFrequency : REAL;

ContextSwitchTime : REAL;

ProcessorRoportLevel : INTEGER;

ProbeNu_ber : INTEGER;

(* priority of system process *)

(* amount of processing needed to

* oxoc_to the system process *}

(* how often the system needs

* to run *)

(* context switching time *}

(* report parameter *)

(* which system probe to use *)

(* When a process has completed, it

* is returned to the caller *)

(* check for completed procesaes *)

(* system needs to run *)

END;

OUTPUTS

VAR

Completed : ProcessingUnit;

END;

EVENT

ProcessComploted : BOOLEAN;

Run System : BOOLEAN;

TYPE

(* processes waiting for processing *)

(* process that comes in on a port *)

(* process that has the processor *}

(* the system process *)

ProcossingQueue - QUEUE OF DESCENDING ProcessingUnit;

CO_qST

ContextSwitchPriority - 12345678; (* big number *_

VAR

RoadyQ_eue : ProcossingQ_eue;

CurrentProoes8 : ProcassingUnit;

ExacutingProcoss : ProcessingUnit;

Syste_Process : Process ingUnit;

ContextSwitchProcess : ProcessingUnit; (* process which represents the context switch time *)

CcmpletionNotice : EventPointer;

ProcossSwitchlngTo : ProcessingUnit; (* process that the cpu is switching to *)

OutputDataElmment : DataElementType;

PROCEDURE BoglrLExocutionOfProcess(DesiredProcess : ProcessingUnit};
BEGIN

ExecutingProcess :- DesiredProcess;

841

(* 1/27/88 PRB changed clock to longclock *)

ExecutingProcess^°Started :- 5ongClock;
AFTER ExecutingProcess ^.Processin_LeftToDo Proces$Co_leted <- TRUE;

CompletionNotice :- CurrentNotice;

REPORT(ProcessorReportLevel] "%s" ExecutingProcess^.ProcesslD TAGGED "Started";

Eh_ Begi_ecutionOfProces $;

BEGIN

NEW(SysteaProcess);

WITR SysteaProcess* DO

Priority :- Syste_riority;

ProcassingLeftToDo :- SystemProcessingNeeded;

ProcessID :- 'Systemt;

DataWritten :- TRUE;

END;

NEW (ContextSwitchProcess) ;

WITH ContextSwitchProcess ^ DO

Priority :- ContextSwitchPriority;

ProcessingLeftToDo :- ContextSwitchTime;

ProcemsID :- 'Context Switch';

DataWritten :- TRUE;

END;

ExecutingProcans :- NIL;

LOOP

_/T_NT IL EVENT

Su_itProceas : (* process is ready to use the processor *)

CurrantProcess :- Activ_Port ^ •S_tProcess;

(*
• Fibre out who sent the process to you, so that you can

• send it back to them once the process has completed.

*)
CurrantProcess^. SendBackOutThisPort :- GetOutPort (GetInNode (

ActivaPort ^ .index} } ;

CurrentProcess ^.ProcessingLeftToDo :- CurrentProcess ^ .ProoessingRequired;

CurrantProcess ^,DataWritten :- NOT CurrentProcess^.WriteData;

REPORT(ProcessorReportLevel] "%s" CurrentProoess ^.PrOcessID TAGGED "Su_itted";

IF ExecutingProcess - NIL THEN

INSEP,T CurrentProcess IN ReadyQueue;

BeginExecutionOfProcess (ContextSwitchProcess) ;

ProcessSwitchingTo :- CurrentProcess;

SA_LE 1.0 WITH SystemProbe(ProbeNumber];

ELSIF CurrentProcess^.Prlority > ExecutingProcess^.Priority THEN

CANCEL CompletionNotice;

(* 1/27/88 PRB Changed calculation to double precision *)

ExecutingProcess ^.ProcessingLeftToDo :- ExecutingProcess^.ProcessingLeftToDo -

DF1oatToReal (LongClock - ExecutingProcess ^.Started} ;

REPORTIProcessorReportLeval] "%s, %10.6f" ExecutingProcess ^.ProcessID,

ExecutingProcess ^.ProcessingLeftToDo TAGGED "Preempted";

INSERT ExecutingProcess IN ReadyQueue;

INSER_ CttrrentProcess IN ReadyQueue;

BeginExecutionOfProcess (ContextSwitchProcess) ;

ProcessSwitchingTo :- Current.Process;

ELSIF ExecutingProcess ^.Priority - ContextSwltchPriority THEN

INSERT CurrsntProcess IN ReadyQueue;

(* 1/27/88 PRB Changed calculation to double precision *)

IF ExecutingProcess ^ .Started - LongClock THEN

ProcessSwitchingTo :- FirstQ(ReadyQueue} ;

END;

ELSE

INSERT CurrentProcess IN ReadyQueue;

END;

542

I Proce_sCcmpleted : (* check for completed processes *)

REPORT[ProcessorReportLevel] "%s" ExecutingProcess^.ProcassID TAC_ "Finished";

IF NOT ((Exec_tingProcess^.Prlorlty - SystemPrlority) OR

(ExecutingProcess ^ .Priority - ContextSwitchPriority)) THEN

NOW outport [ExecutingProaess^.Send_ackOutThisPortJ ^.Completed <- ExecutlngProcoss;

END;

IF ExecutingProcass^.Priorlty <> ContoxtSwitchPriorlty THEN

BoginExocutionOfProcess (ContextSwitchProces s };

IF QSiza(RaadyQueua} <> 0 THEN

ProQessSwitchingTo :- FirstQ (ReadyQue,e) ;

ELSE

ProcessSwitchingTo :- NIL;

END;

ELSIF QSiza(ReadyQueue) <> 0 TH_

IF ProceesSwltchingTo - FirstQ(ReadyQueua) THEN

R_VE FIRST Currant.Process FRCM ReadyQueue;

IF (MyNodeID - 45) AND (NOT CurrnntProces8 ^ .DataWritten} THEN

CurrentProcess ^ .DataWrltten :- TRUE;

Out_utDataElament. SimulationT/me :- clock;

OutputDataElameDt.Frequency :- Cyclic;

OutputDataElament. CyclicData.FrameCount :- CurrentProcess ^.Frame;

Out_utDataElament. CycllcData. C_Varlation :- StartComputing;

OutputDataE lament. CyclicDat a. Pr oce8 singNeedodThisFrame :-

CurrentProcessa.ProcessingReq_ired + CurrentProcess^.ProossngAfterBlock;

CJ3E CurrentProcess^.Priority OF

10: Outp_tDat_lElement.EvontID :- 1;

l 9 : OutputDataElement.EventID :- 2;

J 8: OutputDataElenent.EventID :- 3;

END;

WritnDataElamentType (OutputDataElament) ;

ELSIF (MyNodeID - 46} AND (NOT Curren_Procoss^.DataWritten) THEN

CurrontProcess^.DataWritten :- TREE;

Out_utDataElamont. SiuulationTine :- clock;

O_tputDataElament. Frequency :- Cyclic;

O_tputDataElament.CyclicData.FraneCount :- CurrentProcoss^.Frame;

O_tputDataElament. Cyc I _cData. CVariation :- StartChain;

CASE CurrentProcess^.Priority OF

i0: OutputDataElemont.EventID :- 13;

I 9: OutputDataElonent.EventID :- 14;

l 8 : OutputDataEleJ_ent.EventID :- 15;

END;

WriteDataElamantTy_ (OutputDataEloment} ;

END;

EeginExecutionOfProcoss (CurrentProcess) ;

ELSE (* process of higher priority arrived during context switch *)

EeginExecutionOfProcess (ContextSwitchProcess) ;

ProcessSwit chingTo :- FirstQ (ReadyQueue) ;

END;

ELSE

ExecutingProcess :- NIL;

SABLE 0.0 WITH Syst0mProbe[ProbeNumber] ;

END;

J RunSystam : (* system process needs to run *)

INSERT SystemProcess IN RoadyQ_eue;

REPORT[ProcessorReportLev_l] "%s" SysteZ,Process^.ProcessID TAGGED "Stt_itted";

IF (ExecutingProcess <> NIL) _ ((Exec_tingProcess^.Priority - Co,textSwitchPriority) AND

(QSize(ReadyQueue) - i)) THEN
(*
* Trying to sub, it the process during a context switch to the background process. This requires

* a second context switch to occur before the system process can run.

*)
ProcessSwitchingTo :- NIL; (* has effect of causing another context s_ritch *}

ELSIF ExecutingProcess - NIL THEN

EeginExecutionOfProces8 (ContextSwltchProcess) ;

ProcessSwitchingTo :- SystenProcess;

SAMPLE 1.0 WITH Syst_robe(Pro_Number] ;

ELSIF ExecutingProcess ^.Priority <> ContextSwitchPriority THEN

CANCEL CompletionNot ice;

B43

(* 1/27/88 PRB Chan_ed calculation to double precision *)

ExecutingProcess ^ .Process_ngLe_ToDo :- ExecutingProcees^.ProcessingLeftToDo -
DFloatToReal (LongClock - ExecuttngProcess ^. Started) ;

I_SF_T ExecutingProcoss IN Ready.sue;
REPOP_T(ProcessorReportLevel] "%s" ExecutingProcess^.ProcessID TAGG_ "Preempted";

BeglnExecutionOfProcoss (ContaxtSwitchProcess };

ProcessSwitchingTo :- SysteaProcess;

END;

AFTER SystemFrequency RunSystem <- TRUE;

StartSystem : (* Start the syst_ pro_ess r_in.lng periodically *)

NOW RunSyst-- <- TRUE;

Resot :

IF (ExocutingProcess <> NIL) AND ((ExecutingProcess^.Priority <> SystemPriority) AND

(ExeoutingProcoss ^.Priorlty <> ContextSwitchPriority)) THEN

DISPOSE (Exoc.tingProcess) ;

END;

(*

* Clear the queue

*)
FC_CH ExecutingProcess EN P_adyQ_aeue DO

P_VE FIRST ExocutingProcess FR_ ReadyQueue;

IF (ExecutingProcoss^.Priority <> SystlnPriority} AND

(ExecutlngProcess^.Priority <> ContextSwitchPrlorlty) T_

•DISPOSE (ExecutingProcess) ;

END;

Eh_;

ExecutingProcess :- NIL;

ProboRiset :

ClearProbe (SystemProbe [ProbeNumber] };

IF ExecutingProcess 0 NIL THEN

SAMPLE 1.0 WITH SystemProbe(ProbeNumber] ;

ELSE

SAMPLE 0.0 WITH SystemProbe(ProbeNu_ber) ;

END;

END;

_D;

END Processor.

_44

MATH

B-45

DEFINITION MOIX_LE Math;

EXPORT _ALIFIED RealMod;

PROCEDURE RealMod(X : REAL;

Y : REAL) : REAL;

END Math.

8-46

MATH

B-47

IMPLEMD;TATION MCOULE Math;

FROM MathLib0 IMPORT rood;

PROCEDURE RealMod(X : REAL;

Y : REAL)

BEGIN

RETURN (rood(X,y));

END RealMod;

END Math.

: REAL;

8-48

IOSERVICE

B-49

DEFINITION DEVM IOService;

FROM IOS REACH ChainType*, ChainStatusData*;

FROM TypeConst IMPORT N1mberOfNatworks ;

EXPORT IORequestType*, IOResponsaTyp@*,

IOActivityTyp@, RequestActivityType, Respons.ActivityType,

Networ kMa_ &gerAct ivityType,

NetworkR_nagerServiceRequest *, NetworkHealthType,

ChalnStatu sType, NewNet workSt ataType *,

ChainExecu tedWit hou tError, Re lea seCha/nRespon seMemory;

TYPE NetworkReal_hType- {InService, OutOfServlce);

IOActivityTyp@ = (ApplicationRequest, NetworM_anagarRequest,

MonitorForFault,)4_plicat io_%es_ons a,

NetworkManagerResponse, FaultMonltorResponsa} ;

Request&ctlvityType - [ApplicationRequest .. MonitorForFault] ;

Respons-mctivityType - [ApplicatlonResponse .. FaultMoaitorResponsa];

NetworkManaqarActivityType- (GrowNetwork, RapairFault, awitchRootLink);

ChainStatusType - (NoFa_its, CcmmunicationFault,

NotExecuted} ;

NewN@tworkStateType - ENTITY

NatworkID : INTEGER;

State : NetworkHaalthType;

MonitorChain : ChalnType;

ICRequestType - ENTITY

Priority : INTEGER;

identifier : INTEGER;

RequestTimeoutValue : REAL;

OnD_and : BOOLEAN;

Frame : INTEGER;

RImponseExpect ed : BOOLEAN;

CASE RequestType : RequestActivityT_ OF

ApplicationRequ est :

ChainArray : ARRAY [I .. NumberOfNetworks] OF ChainType;

[NatworkManagerRequest, MonitorForFault:

Chain : ChainType;

END;

E_D;

IOResponsaType - ENTITY

Identifier : INTEGER;

CASE ResponsaType : ResponseActivityTypa OF

AppllcationResponsa :

Frame : INTEGER;

ChainStatus : ARRAY (1 .. NumberOfNetworks] OF ChainStatusTyp@;

ResponseAzray : ARRAY [i .. NumberOfNetworks] OF ChainStatusData;

J NetworkManagerResponse, FaultMonitorResponse:

Response : ChainStatusData;

END;

8-50

END;

NetworkManagerServiceRequest - ENTITY

CASE SorvicoRoquest : N_workMauagorActlvityTypo OF

Growf4etwork:

Activel_ootLink : INTEGZR;

J RepairFa.lt •

MonitorChalnResponse : IOResponseType;

L SwitchRoot Link:

FailodRootNode : INTEGER;

_ewRoo_lo8_ : INTEGER;

**

pROCEDURE ChainExecute_ithoutError (Chain : ChainStatusOata) :BOOLEAN;

**

PROCEDURE ReloasoChalnResponseM_ory(VAR Rosponse : ChainStatusData);

END IOService.

8-51

IOSERVICE

B-52

**

(* 1/27/88 This change supports implements:

a) Waiting until all higher priority processing is completed

before su_itting a pending I/O Request.

b) When a pending I/O request is aade, the semaphore is

marked busy when the pending I/O processor request is made. *)

**

DEYM IOService;

FRCN IOS REACH ChainType*, ChainStatmsData*,

InputFrameType*, TransactionTypo*;

FRC84 Processor REACH ProcessingUnit*;

FRGM Controls REACH SystemProbe, NumberOfProbes;

FRet4 CentralDB I_ORT IOSConnoctionType, FindIOSConnections,

R6adNode In ter Connection s;

FROM IOS II_PORT _imeOutlndicatorType;

FRCt4 GrowNet IMPORT MakoMonitorRoquest;

FROM Utilities IMPORT ManagerChainUnloadTime, ComputeChainTimeout;

FRCt4 TypeConst IMPORT StatusType, NumberOfNetworks, NumberOfIOSPerChannel,

NodoArrayTypo;

FRet4 BusMessag IMPORT MessageTypo, IOActivltyChoice;

FROM Senddata I_4PORT DataElementType, FrequencyType, NonCyclicVariationType,

NonCyclicDataType, Writ eDataElomentType;

FRCe4 Math IMPORT RealMod;

IMPORT SYSTEM;

IMPORT QueueM;

EXPOSE

**

PROCEDURE chainExecutedNithoutError (Chain : ChainStatusDeta) :BOOLEAN;

BEGIN

RETURN NOT((Chain^.AnyFailed) OR (Chain^.AllFailed) OR

(Chain ^ .ChainTiaeOutlndicator - TimedOut) } ;

END ChainExecutodWithoutError;

**

PROCEDURE ReleaseChainResponsei4emory(VAR Response : ChalnStatusData) ;

VAR Frame : InputFrameType;

ElamentCounter : INTEGER;

NumberOfElements : INTEGER;

BEGIN

IF Response <> NIL THEN

N_mberOfElements :- QSize (Response ^ .InputFrameQueue) ;
FOR ElementCounter :- I TO NumberOfElements DO

Frame :- QRomove (Response ^ .InputFrameQueue, TRUE) ;

_$3

IF Frame^.TransactionTimeOutIndicator " NormalCo_letlon THEN

DISPOSE (Frame ^ .InputYrame) ;

END;

DISPOSE (Frame) ;

END;

QOispose (Response*. InputFrameQueue, SIZE (Frame) } ;

DISPOSE (Response} ;

ELSE

WrlteLn (ParamOut) ;

WriteString(ParamOut, "Tried to DISPOSE a NIL Chain Response.");

WriteLn (ParamOur) ;

END;

END;

EVENT IOServiceReques t

R_nNetworkTo Service

ProcessorResponse

M/s sedDeadLine

R_et

ProbeReset

: IOR_estType;

: NewNetworkStateType;

: ProcessingUnit;
: INTEGER;

: BOOLEAN;

: BOOLEAN;

VAR

PARA

DataFr_IOS : ChainStatusData;

ChainCcmpleted : BOOLEAN;

Manager IDNetwork2 : INTEGER;

ApplicationID : ARRAY [I .. 3] OF INTEGER;
IOPIdentifier : INTEGER;

Controls Identifier : INTEGER;

StratQgyForReconfigur ation : INTEGER;

ChalnProcessing100Hz : REAL;

ChainProcessingSOH z : REAL;

chainProcessing25H z : REAL;

EndOfChainProcessingl00Hz : REAL;

EndOf ChainP rocessing50Hz : REAL;
EndOfChainPr ocessing25H z : REAL;

EndOf ChainProces s ingMonit or : REAL;
ProbeNumber : INTEGER;

END;

OUTPUTS

VAR Cha/nToIOS

_pl icationResponse

IOManager2Response

ManagerServiceRqst

Proces sorRequest
ServiceAvailable

stoplOS

END;

TYPE IOServiceStateTy_e - RECORD

Executingl00Hz : BOOLEAN;

ExecutingSORz : BOOLEAN;

Executing25Hz : BOOLEAN;

: ChainType;

: IOResponseType;
: ChainStatusData;

: NetworkMa.nagerServiceRequest;

: ProcessingUnit;

: BOOLEAN;

: BOOLEAN;

8-54

NetworEEealth : ARRAY{I .. NumberOfNetworks] OF NetworkHealthType;

ActiveRootLink : ARRAY[I .. NumbetOfNetworks] OF INTEGER;

E_D;

NetworkConnectionType - RECORD

NetworkConnections : IOSConnectlonType;

ConnectionStatus : ARRAY [I .. NumberOfIOSPerChannel] OF Stat_sType;

END;

IOServiceNetworkConnectionsType - ARRAY [I .. NumberOfNetworks] OF

Net workCon nec tionT1rpe;

Req_estExec%;tionStatus - ENTITY

Req_es t : lORequestType;

CASE RequestType : IOActivityType OF

ApplicationRequest:

ExecatinqOn : ARRAY [1 .. NumberOfNetworks] OF BOOI/_N;

PortArray : ARRAY [1 .. NumberOfNetworks] OF INTEGER;

I NetworMManagerRequest, MonitorForFault:

Port : INTEGZR;

END;

E_D;

SemaphoreType - ENTITY

Priority : INTEGER;

ExecutionStatus : RequutExecutlonStatus;

END;

SemaphoreQueueType - QUEUE OF DESCenDING SemaphoreType;

AlgorithmType- (PowerUp, IORequestSchedule, IOResponseSohedule,

OutputResponseSohe_le, StartPendlngIO, NetworkRepair,

StartFaultMonlt or) ;

UnloadRequestType - RECORD

Response : IOResponseType;

CASE ResponseType : IOActivityType OF

NetworkManagerResponse, Fault.MonltorRe spo 9s e :

ManagerID : INTEGER;

END;

END;

DataType - RECORD

CASE Function : AlgorithmType OF

PowerUp:

I IORequestSched_le:

IORequest : IORequestType;

IOResponseSchedule:

E_S5

IOResponse : IOResponseType;

OutputRQspo.seSchedu IQ •

Rate : INTEGER;

StartPondlngIO:

(* 1/27/88 *) RoquestStatus : RequestExecutionStatus;

StartFaultMonitor:

NetworkRepair:

RopairData : NetworkManagerServlceRequest;

END;

END;

DataPointer - POINTER TO DataType;

EVENT IOCompletionPoll : RoquestExocutionStatus;

InltializeService : BOOLEAN;

CONST IOSystemSorvicePriority

NotworkID2

= i;

-2;

Power_plntialize - 0.000100;

RequestProcessing - 0.000025;

ResponsoCompletionProcossing - 0.000025;

ChainProcossing_v_rhead - 0.000050;

EndOfCha/nProcossingOverhead - 0.000050;

ChainProcossinglTransaction - 0.000018;

ChainProcessing2Transactions = 0.000036;

EndOfChalnProcossinglTransaction - 0.000052;

EndOfChainProcessing2Transactions - 0.000104;

SwitchRootLinkProcessing - 0.000025;

SemaphoroGrantod - -i;

SemaphoreNotGranted - -2;

NoPendingReq_est - -3;

VAR FaultMonitor2

servic_d_uest
RequostToService

ResponseData
NewNQtworkState

IOServicoState

Pe.d/ngRequest

PendingStatus

IOSystemStatus

ServicoNotworkRequost

IONetworkConnections

InterfaceID

NotworkOutOfServiceTimo

TimeNotworkOutOfServico

RoquestTime

OnDemandRoquos tDelay

T im$To_n loa_oques t

Failed_ootNumbor

NetworkCountor

InterfacoCounter

: IORequostType;

: IORequostType;

: Reques tExocution Status;

: UnloadReq_estType;

: NewNetwor kStateType;

: IOServiceStateType;

: SemaphoroType;

: INTEGER;

: BOOLEAN;

: NQtwor k_4anagerServiceRe_fuest;

: IOServiceNet workConnectionsType;

: INTEGER;

: ARRAY [1 .. NumberOfNetworks] OF REAL;

: REAL;

: REAL;

: REAL;

: REAL;

: INTEGER;

: INTEGER;

: INTEGER;

Processinglnformation

PowerUpProcessing
NetworkData

ProcessRoquest

PendingIOProcossing

ResponseDataProcessing

RootLinkSwitchProcesslnq

: DataPointer;

: DataPointer;

: DataPointer;

: DataPointor;

: DataPointer;

: DataPointer;

: DataPointer;

_56

RepairNetworkProce8 8ing

p owerUpRoquest

ProcossResponse

p roces singOut_utRosponse

p roce8 8 ingStar tPendingIO

P rotes singNetworkRepair

DataColloctionRocord

: DataPolntar;

: Processin_nit;

: ProcessingUnlt;

: ProcossingUnit;

: ProcessingUnit;

: Procossin_nit;

: DataEl_ntTypo;

NetworkManager 2Port : INTEr;

AppllcationPort : ARRAY [i .. 3] OF INTEGER;
IOPPort : INTEGER;

ControlsPort : INTEGER;

Notwork2Connections : NodakrrayType;

**

MODULE S_maphore;

FROM SYSTEM IMPORT ADDRESS;

FROM QueueM I_OItT InitQ, PrQInsert, QSize, QRemove, FirstQ,

QSucc, carrier;

IMPORT S_phoreType, SemaphoreQueueType, SemaphoreGranted,

SemaphoreNotGranted, NoPondlngRoquost;

I_ORT WriteString, WritoLn, ParmOut;

I_ORT cbnoasure, Syste_Probe, ProbeNumbor;

EXPORT Request, Release, NoxtReque|t, SomaphoreIdle, SotSe®_phoroldle;

VAR Idle : BOOLEAN;

SenaphoreQuouo : SemaphoreQuouoType;

**

PROCEDURE Request(Semaphore : S_phoreType) : INTEGZR;

VAR Status : INTEGER;

BEGIN

IF Idle THEN

Status :- SemaphoreGranted;

Idle :- FALSE;

ELSE

Status :- SemaphoreNotGrantod;

INSERT Semaphore IN SemaphoreQ_euo;

END;

RETURN (Status) ;

END Request;

**

(* This function returns the priority of the highest priority pending

request. If no request i8 waiting the seaaphore is set to idle

and No pending request is returned. *)

PROCEDURE Release (VAR Status : INTEGER);

VAR PendlngReq_est : Sem_horeType;
BEGIN

Idle :- TRUE;

IF QSize(SeI_aphoreQ_euo) <> 0 THEN

B-57

P_d/ngRequest :- FirstQ (S4maphoreQueue) ;

Status :- Pond/ngRequest^.Priority;

ELSE

Status :- NoPendingReq_est;

END;

END Release;

**

PRf_URE NextRe_est (VAR Request : SemaphoreType} ;

BEGIN

IF QSize(SMu&phoreQueue} > 0 THEN

R_OVE FIRST Request FRCI4 Se-u_phoreQ_eue;

Idle :- FALSE;

SABLE I. 0 WITH SystemProbe [Probm_umber] ;

ELSE

WriteString(ParamOut, "Problem with semphore logic.");

WriteLn (ParemOut) ;

WriteString(ParemO_t, "Trying to remo_ SE_HC_ FROM EMPTY QUEUE.");

WrlteLn (ParamOut) ;

END;

E_ NextRequest;

**

PROCEDUP_ SqmaphoreIdle(VAR Status : BOOLEAN} ;

BEGIN

Status :- Idle;

END SemaphoreIdle;

**

PROCEDURE SetSemaphoreIdle;

BEGIN

Idle :- TRUE;

END SetSemaphoreIdle;

**

BEGIN

Idle :- TRUE;

EA_ Semaphore;

**

PROCEDURE SubmitRequestProcessing(Request : DataPointer;

WriteTheData : BOOL_;

Fr ameCount : INTEGER;

Processing : REAL;

ProcessPriority : INTEGER);

: ProcessingUnit;VAR P rocessRequest

BEGIN

_S8

VAR ProcessRequest

BEGIN

NEW (ProcessRequest) ;

NEW (Proces sRequest) ;

WITH ProcessRequest ^ DO

Priority :- ProcessPriority;

ProcesmingRequlred :- Processing;

WriteData :- WriteTheData;

Frame :- FrameCount;

ProcessID :- 'Req_eetProcessing' ;

Data :- Request;

END;

NOW out_ort [lOPPcrt] ^ .ProcessorRequest <- ProcessRequest;

END $ubl/tReques tProcessing;

**

PROCEDURE Su_itUnloadIORequest(ServiceResponse : DataPointer;

Processing : REAL;

ProcnssPriority : INTEGER);

: ProcessingUnit;

WITH ProcessRequest ^ DO

Priority :- ProcessPrlority;

ProcessingReq_ired :- Processing;

WriteData :- FALSE;

ProcessID :- 'UnloadIORequest' ;

Data :- ServiceRasponse;

END;

NOW outport [IOPPort] ^ .ProcessorRequest <- ProcessRequest;

END Submi_UnloadIORequest;

**

PROCEDURE ResponseCompletion (Response : 10ResponseType) ;

VAR ChainCounter : INTEGER;

BEGIN

WITH Response ^ DO

IF ResponseType - ApplicationResponse THEN

FOR ChainCounter :- I TO NuaberOfNetworks DO

IF ChainStatus [ChainCounter] <> NotExecuted THEN

IF (RasponseArray [ChainCounter] ^ .AnyFailed) OR

(ResponseAr ray [ChainCounter]^.AllFailed) THEN

ChainStatus [ChainCounta:] :- C_unicationYault;

ELSE

ChainStatus [ChainCounter] :- NoFaults;

END;

ELSE

(* Chain not executed so nothing to process. *)

E_59

END;

END;

ELSIF (ResponseType- NetworkManagerResponse} OR

(ResponseType - FaultMonitorResponse) THEN

(* Network Manager is responsible for processing

these I/0 responses. *)

END;

END;

RuponseCompletion;

**
(* This procedure marks a root link on Network 2 failed. *)

PROCEDURE FailRootLink (VAR RootLinkStatus : NetworkConnoctlonType;

RootLink : INTEGER} :INTEGER;

VAR RootLinkCounter : INTEGER;

FailedNumber : INTEGER;

BEGIN

FOR RootLinkCounter :- I TO NumberOfIOSPerChannel DO

IF RootLinkStatus .NetworkConnoctions [RootLinkCounter] .GPCAddress
- RootLink THEN

RootLinkStatus.ConnoctionStatus [RootLinkCounter] :- Failed;

FailodNmnber :- RootLinkCounter;

END;

Eh_;

RETURN (FailodNumber) ;

END FailRootLink;

**

PROCZDURE SwitchRootLinks (VAR RootLinkStatus : NetworkConnectionType;

NetworkID : INTEGER;

FailedNumber : INTEGER) : INTEGER;

VAR RootLinkCounter : INTEGER;

NewRoot Link : INTEGER;

BEGIN

WITH RootLinkstatus DO

RootLinkCounter :- 1;

LOOP

IF ConnectionStatus [RootLinkCou_tor] - Idle THEN

(* A new root link has been found. *)

ConnectionStatus {RootLinkCounter] :- Active;

NewRootLink :- NetworkConnections [RootLinkCounter] .GPC_x_Iress ;

EXIT;

ELSIF RootLinkCounter < NumberOfIOSPerChannel THEN

RootLinkCounter := RootLinkCounter + i;

8_0

ELSE

(* A good root link cannot be found. *)
NewRootLink :- 0;

EXIT;

END;

END;

_D;

RETURN (NewRootLink) ;

END SwitchRootLinks;

**

PROCEDURE ComputeIOLoadTime (IORequest : IORequestType;

ServiceState : IOServiceStateType} :REAL;

VAR LoadTime : REAL;

**

(* This function looks at the first transaction in chain i of

application IORequest to determine if the request is an separated-I

reqeust. If so, TRUE is returned, otherwise, FALSE is returned. *)

PROCEDURE SeparatedIRequest(Chain : ChalnType) : BOOLEAN;

VAR Transaction : TransactlonT},pe;

BEGIN

Transaction :- FirstQ(Cha/n^.TransactlonQueue) ;

IF (Transaction ^.OutputFrame^.Message - DZUInput) AND

(Traasaetion ^ .O_tputFrame^.DIUCommand.Activity- Input) THEN

RETUEN (TRUE) ;

ELSE

RETURN (FALSE} ;

END;

END SeparatedIRaquest;

**

BEGIN

IF IORequest^.RequestType - ApplicationRequest THEN

(* Need to check for type of request, Grouped, Separated-I,

Separated-O. Separated I has different loading time. *)

IF SeparatedIRequest(IORequest^.ChainArray[l]) THEN

LoadTime :- 2.0 * ChainProcessingOverhead;

ELSE

CASE IORequest ^ .Identifier OF

i00:

LoadTime :- (2.0 * ChainProcessingOverhead) + ChainProcessingl00Hz;

J 50:

LoadTime :- (2.0 * ChainProcessingOverhead) + Cha/nProcesslngSOHz;

I 25:

8-61

LoadTimQ :- (Z.0 * ChainProcessingOverhQad} + ChainProcessingZSHz;

END;

END;

WITH ServiceState DO

IF NOT ((Network_ealth[l] - InService) AND (NetworkHealth[2]

- InService) } THEN

(* Cut load time in half since only one network

is in service. *)

LoadTime :- 0.5 * LoadTime;

END;

END;

ELSIF IORequest ^ .RequestType = NetworkManagerKequest THEN

CASE IORequest^.Chain^.NumberOfTransactions OF

i:

LoadTime :- RequestProcessing + ChainProcessingOverhead

+ ChainProcessinglTransaction;

J2:

LoadTime :- RequestProcessing + ChainProcesslngOverhead

+ ChainP roces s ing2 Transactlons;

I 4, 18:

(* This hanc[le talker o_t of t%Lrn request d_ring

network growth. *)

LoadTime :- Req%_estProcessing + ChainProcessingOverhead;

END;

ELSIF IORequest^.RequestType - MonitorForFault THEN

LoadTime :- 0.0;

END;

RETURN (LoadTime) ;

END ComputeIOLoadTime;

**

PROCEDURE ComputelfX/nloadTime (IOResponse : IOResponseType) :REAL;

VAR UnloadTime : REAL;

BEGIN

IF IOResponse ^ .ResponseType -ApplicationResponse TH_N

CASE IOResponse^.Identifier OF

I00:

UnloadTime :- (2.0 * EndOfChainProcessingOverhead) + EndOfChainProcessingl00Hz;

I 50:

UnloadTime :i (2.0 * EndOfChainProcessingOverhead) + EndOfChainProcessing50Hz;

I 25:

84_

UnloadTime :- (2.0 * EndOfChainProcessingOverhead) + EndOfChainProcessing25Hz;

END;

WITH IOResponse ^ DO

IF NOT ((ResponseArray[l] O NIL) AND (ResponseArray[2] <> NIL)) THEN

(* Out unload time in half since only one network

is in service. *)

UnloadTim, :- 0.5 * UnloadTime;

Eh_;

ELSIF IOResponsa^.ResponseType - NetworkManaqerResponse TH_

CASE QSize (IOResponse ^ .Response*. InputFrameQueue) OF

i:

UnloadTime :- EndOfChainProcessingOverhead + EndOfChainProcessinqlTransaction;

12:

UnloadT/me :- EndOfChainProcessingOverhead + EndOfChainProcessing2Transactions;

I 4, 18:

(* This handle talker out of turn request during

network growth. *}

UnloadTime :- EndOfChainProcesslnqOvorhead + EndOfChalnProcessing_6onitor;

END;

ELSIF IOResponse ^ .ResponseType - FaultMonitorResponse THEN

UnloadTime :- EndOfChainProcessingOverhaad + EndOfChainProcessingMonitor;

END;

RETURN (UnloactT/me + ResponseCompletionProcessing) ;

END ComputeIOUnloadTime;

**

(* Check to make sure chain on network 2 executed without error. If not,

take the network 2 out of service and schedule a monitor for fault chain

if the reconfig_ration strategy is one shot repair, otherwise have

the network manager regrow network 2. *)

PROCEDURE CheckNetworksForFault (Response : IOResponseType;

VAR ServiceState : IOServiceStateType);

VAR FaultCheckRequest : DataPointer;

DataCollectionRecord : DataElementType;

RegrowNetworkRequest : NetworkManager ServiceReq_est;

Faul tMonit orProcessing : DataPointer;

ProcessinqFaultMonitor : ProcessingUnit;

RegroWNetworkProcessing : DataPointer;

ProcessingRegrowNetwork : ProcesslngOnit;

BEGIN

IF (ServiceState.NetworkBealth[2] - InService}

AND (Response ^.ChainStatus [2] -

C_unicationFault } THEN

ServiceState.NetworkHealth[2] :- OutOfService;

NetworkOutOfServiceTime [2] :- clock;

REPORT "%12.8f" clock TAGGED "Network Out of Service at ";

8_3

REPORT "%d" NetworkCounter TAGGED "The network with the failure is ";

DataCollectionRecord. Event ID :- 28;

DataCollectionRecord. SimulatlonTime :- clock;

DataCol lec tionRecord. Frequency :- NonCyclic;

DataCollectionRecord.NonCyclicData.N_Varlation :- NetServiceChange;

DataCollectlonRecord, NonCyc licData ,Netwo rkID :- 2;

WriteDataEl_ntType (DataCollectionRecord) ;

IF StrategyForReconfiguration - 0 TH_

REPCR_ "%12.8f" clock TAGGED "Application Chain Fault";

NEW (FaultMonitorPro cos sing);

FaultMonitorProcessing^.Function :- StartFaultMonitor;

NEW (ProcesslngFaultMonitor };

WITH ProcessingFaultMonitor ^ DO

Priority :- IOSyst iServicQP riority;

ProcessingRequired :- Req_estProcessing + ChainProcessingOverhead;

WriteData :- FALSE;

ProcessID :- 'Fault MonitorProcessing' ;

Data :- FaultMonitorProcessing;

END;

NOW out'port (In, Port]^.ProcessorRequest <- ProcesslngFault_4onitor;

ELSE

IOServiceBtate.ActiveRootLink[2] :- IONetworkConnections[2].

NetworkConnections [2].GPCAddress;

NEW (RegrowNotworkRequest } ;

NEW (RegrowNetworkRequest) ;

WITH RegrowNotworkRequest ^ DO

ServiceRequest :- GrowNetwork;

ActiveRootLink :- IOServiceState .ActiveRootLlnk [2];

END;

IONetworkConnections (2] .ConnectionStatus (2] :- Active;

NEW (RegrowNetworkProces sing);

RegrowNetworkProces sing^. Function :1 NetworkRepair;

RegrowNetworkProcessing^.RepairData :- RegrowNetworkRequest;

NEW (ProcessingRagrowNetwork) ;

WITH ProcessingRegrowNetwork ^ DO

Priority :- IOSys t_nServiceP riorit y;

ProcessingRequlred :- 0.0;

Mr iteData :- FALSE;

ProcessID :- 'Regrow Network Processing' ;

Data :- RegrowNetworkPr oces sing;

END;

NOW outport [IOPPort]̂ .ProcsssorRequest <- ProcessingRegrowNetwork;

END;

ELSIF (ServiceState.NetworkHealth[1] - InService)

AND (Response*.ChainStatus (i] - CommunicationFault} THEN

WriteString(ParamOut, "Unexpected fault found in network I.");

WriteLn (ParamOur} ;

ELSE

_64

END;

(* Either the network is already out of service, or no

communication faults oecured. In either case there is

no_hing to do. *)

END CheckNetworksForFault;

**

(* This procedure camputes the time to load the Z/O request on the
network(s) that are in service, starts the chains, and schedules

the I/O completion poll. *)

PROCEDURE ExecuteApplicationRequest (IORequest : IORequestType;

ServiceState : IOServiceStateType);

VAR S_aphore : SaeaphoreType;

SaaaphoreStatus : INTEGER;
InterfaceID : INTEGER;

NetworkCounter : INTEGER;

LoadReq_es t : Req%lestExecu tionSt atu s;

BEGIN

NEW(LoadRequest);

LoadReq_est^.Req_est :- IOReq_est;

LoadRequest^.Req_estType :- ApplicatlonRequest;

FOR NetworkCounter :- I TO N_mberOfNetworks DO

IF (ServiceState.NetworkHQalth[NetworkCounter] - InService) THEN

(* Determine the active interface for the network that this

request will execute on. *)

InterfaceID :- ServiceState.ActivaRootLink[NetworkCounter);

LoadRequest^.PortArray[NetworkCounter] :- GetOutPort(InterfaceID);

(* Mark network loaded with a chain. *)

LoadRequest^.ExecutingOn[NetworkCounter] :- TRUE;

ELSE

(* Mark network not loaded with a chain. *)

LoadRequest^.ExecutingOn[NetworkCounter] :- FALSE;

FleD;

END;

(* Make a request for the I/O systea semaphore, if the semaphore

is idle, the request will be executed. Otherwise, if no other

request of the same priority is waiting, the current request

will be pended for later execution. If a request of the same

priority is waiting, the currant request will be ignored. *)

NEW(Semaphore);

Semaphore^.Priority :- IOReq_est^.Priority;

Samaphore^.ExecutionStatus :- LoadRequast;

SemaphoreStat_s :- Request(Semaphore);

IF (S_aaphoreStatus - SamaphoreGranted) THEN

StartIOSs(LoadRequest, ServiceState);

DISPOSE(Semaphore);

END;

END ExecuteApplicationRequest;

PROCEDURE ExecuteManager2Request(IORequest : IORequestType;

ServiceState : IOServiceStateType);

S_5

CON_ Notw_r_ _ - 2 ;

V_R TimeToLoadRequest : REAL;
Inter faceID : I_TEGER;

ExecutionReques t : RequestExecutionSt atu s;

LoadIOProcessing : DataPointer;

BEGIN

(* This must is a request for a network that Is out of service,

NetwDrk Manager chain or Monitor for fault chain. The status

of the network is assumed out of service and no other chain

is pending on this network. *)

(* DetermJma the active interface for the network that this

request will execute on. *)
InterfaceID :- ServiceState. Act iveRootLink INetwork2 ID];

(* Compute the time to load this request in the DPM through

the Data Exchange. *)

TimeToLoadRequest :- ComputeIOLoadTime (iORequest, ServiceState) ;

NEW (ExocutionA_luest) ;

Execu tionReques t ^.Request :- lORequest;

ExecutionRequest^.RequestType :- IORequest^.RequestType;

ExecutionRequest ^.Port :- GetOutPort (InterfaceID) ;

StartIOSs(ExecutionRequest, ServiceState);

END ExecuteManagor2Request;

PROCEDURE UnloadResponse(RequestToService : RequestExecutlonStatus;

ServiceState : lOServiceStateType;

VAR Data : UnloadRequestType);

VKRNetworkCounter : INTEGER;

InterfaceID : INTEGER;

BEGIN

NEW (Data. Response) ;

IF KequestToService^.Request^,RequestType - ApplicationRequest THEN

Data.ResponseType :- ApplicatlonResponse;

Data.Response^.ResponseType :- ApplicatlonResponse;

Data.Response^.Identifier :- RequestToService^.Request^.Identifier;

Data.Response^.Frame :- RequestToService^.Request^.Frame;

(* Only unload those network(s) executi,g a request. *)
FOR NetworkCounter :- 1 TO NumberOfNetworks DO

IF RequestToService^.ExecutingOn_NetworkCounter] THEN

(* This is set to force Request Completion processing

to process this chain. Request completion

processing will set this to the proper value. *)

Data.Response^.ChainStatus[NetworkCounter] :- NoFaults;

(* Determine the active interface for the network

that this request was executing on. *)

InterfaceID :- ServiceState.ActiveRootLink[NetworkCounter];

WITH Data.Response ^ DO

ResponseArray[NetworkCounter] :- inport[GetInPort(

InterfaceID)]^.DataFromIOS;

IF inport[GetlnPort(InterfaceID)]^.ChainCompleted TH_

_66

(* Chain Co_leted normally. *)

Response^tray [NetworkCounter]*.ChainTimeOut Indicator

:- NormalCompletion;

ELSE

(* Chain has timed out. Command IOS to stop

execution and unload chain. *)

Respons eArray [Networ kCounter]^ .ChainTimeOut Indicat or

:- T_medOut;

NOW outport [GetOutPort (InterfaceID)]^ .StopIOS <- TRUE;

END;

END;

ELSE

Data.Response ^.chainStatus [NetworkCounter] :- NotExecuted;

Data. Response ^ .ResponseArray (NetworkCounter] :- NIL;

END;

Eh_;

ELSE

IF RequestToService ^ .RequestType - NetworkManagerRequest THEN

Data.ResponseType :- NetworkManagerRespons e;

Data.Response* .ResponseTypo :- NetworkManagerRosponse;

ELSE

Data. ResponseType :- FaultMonitorRe spon se;

Data. Response ^.ResponseType :- FaultMonitorResponse;

Eh_;

(* Unload the request *)

Interface ID :- ServiceStats. ActiveRootLink [NetworkID2] ;

Data,Response ^.Response :- /nport [GetInPort (InterfaaeID)]*.DataFromIOS;

IF inport [C_tInPort (InterfaceID)]^.Chaincompleted THEN

Data. Response ^.Response ^.ChainTimeOut Indicator :- Nor_ICompletion;

ELSE

Data.Response^.Response^.ChainTi_eOutIndicator :- TimedOut;

NOW outl_ort [GQtO_tPort (InterfaceID)]^ .StopIOS <- TRUE;

END;

END;

END UnloadResponse;

**

PROCEDURE StartIOSs (RequostToLoad : RequestExecutionStatus;

ServiceState : IOServiceStateType) ;

CONST OneMilliSecond- 0.001;

VAR NetworkCo_nter : INTEGER;

BitTimeToNextMilliSecond : REAL;

BEGIN

WITH RequestToLoad ^ DO

E_67

IF RequestType - ApplicatlonRequest

REPORT "%d" Request^.Identifier TAGGED "Start Network Activity";

FOR NetworkCounter :- 1 TO NumberOfNetworks DO

IF ExecutingOn[NetworkCounter] THEN

IF ServiceState.NetworkHealth[NetworkCo_ter] - InService THEN

NOW outport[PortArray[NetworkCounter]]^.ChainToiOS

<- RequestA.ChainArray[NetworkCounter];

ELSE

(* This chain was loaded when network was

in service, but has gone out of service

before the chain co,ld begin execution,

ExecutingOn[NetworkCounter] :- FALSE;

,)

END;

END;

END;

ELSE

NOW outport[Port]^.Ch_nToIOS <- Request^._a_;

END;

BitTlmeToNextMilliSecond :- OneMilliSecond - RealMod(clock, OneM/lliSecond);

AFTER (BitTimeToNextM/lliSecond + Request^.RequestTimeoutVal,e)

IOCompletionPoll <- RequestToLoad;

END;

END StartIOSs;

Network_ager2Port :- GetOutPort (ManagerIDNetwork2} ;

ApplicationPort [I] :- GetOutPort (ApplicationID [1]) ;

ApplicationPort [2] :- GetOutPort (ApplicationID [2]) ;

ApplicationPort [3] := GetOutPort (ApplicationID [3]) ;

IOPPort :- GetOutPort (IOPIdentifier) ;

ControlsPort :- GetOutPort (ControlsIdentifier) ;

(* Request lOP to complete Power Up Initialization.

NEW (PowlrUpProcessing) ;

WITH PowerUpProcessing ^ DO

,)

Function :- PowerUp;

END;

NEW (PowerUpRequest) ;

WITH PowerUpReq_est ^ DO

Priority :- IOSystemServicePriority;

ProcessingRequired :- Poweruplntialize;

WrlteData :- FALSE;

ProcessID :- 'IOServicePowerUp';

Data :- PowerUpProcessing;,

END;

NOW outport[lOPPort]^.ProcessorRequest <- PowerupRequest;

8_8

LOOP

WAITUNTIL (ProcessorResponse)

ProcessorResponse :

ProcessResponse :- ActlvIPort^.ProcessorResponse;

NetworkData :- ProoessResponse ^ .Data;

WITH NetworkData ^ DO

IF Function - PowerUp TH_

NOW InitializeService <- TRUE;

EXIT;

ELSE

WriteString(ParamOut, "Probl_ during power up processing. ");

WriteLn (ParamOur) ;

END;

END;

EI_);

DISPOSE (NetworkData} ;

DISPOSE (ProcessResponse) ;

END;

(* This loop waits for the initialize service request.

would happen at power up in a flight syst_. *)

LOOP

WAITUNTIL (InitializeService)

Init ializaService :

(* Find out how many IOS's each network has.

This request

*)

FindIOSConnections(l, ICNetworkConnections(l].NetworkConnections);

FindIOSConnections(2, IGNetworkConnectionsI2].NetworkConnectiofls);

(* Initialize all network connections to idle. *)

FOR NetworkCounter :- 1 TO NumberOfNetworks DO

FOR lnterfaoeCounter :- i TO NumberOfIOSPerChannel DO

IF IONetworkConnectio, s[NetworkCounter].

NetworkConnections[InterfaceCounter]0GPCAddress

<> OTHZN

IONetworkConnections[NetworkCounter].

ConnectionStatus[I,terfaceCounter] :- Idle;

ELSE

(* This simulation run does not have an interface

with this ID, set its status to failed. *)

IONetworkConnections[NetworkCounter].

ConnectionStatus[InterfaceCounter] :- Failed;

END;

END;

END;

(* Initialize Active interfaces. Since all hardware should

B_9

END;

END;

LOOP

be "good", the first interface will be used. *)

IC_etworkConnections[1].ConnectionStatus[1] :-

IONetworkConnections[2].ConnectionStatus[l] :-

IOServiceState.NetworkHealth[1] :-

IOServiceState.NetworkHealth[2] :-

IOServiceState.ActiveRootLinkI1] :-

IOServiceState.Activel%ootLink[2] :-

IOServiceStateoExecutingl00Hz :-

IOServiceState.ExecutingSOHz :-

IOServiceState.Executing25Hz :-

Active;

Active;

InService;

InService;

IONetworkConnections[l).NetworkConnections[1].GPCAddress; _-

IONetworkConnections[2].NetworkConnectionsIl].GPCAddress;

FALSE;

FALSE_

FALSE;

(* Create chain to monitor network 2 for faults. *}

Re_dNodelnterConnections(2_ Network2Connections);

FaultMonitor2 :- MakeMonitorRequest(Network2Connections);

WITH FaultMonitor2 ^ DO

Identifier :- 302;

Priority :- i;

ResponseExpected :- TRUE;

RequestType :- MonitorForFault;

Chain^.NetworkToBeExecutedOn :- 2;

Chain^.Chainldentifier := 302;

END;

(* Notify controller that the networks are available to use.

NOW o_tport[ControlsPort]^.ServiceAvailable <- TRUE;

EXIT;

*)

WAITUNTIL EVENT

lOSe rviceRequest:

ServiceReq_est := ActivePort^.IOServiceReq_est;

IF ServiceRequest _ .OnDemand THEN

OnDemandRequestDelay := Random(l, 0.000020, 0.000035);

ELSE

OnDemandRequestDelay := 0.0;

END;

IF (ServiceReq_est^.RequestType- ApplicationRequest) AND

(ServiceRequest^.Priority- i0) AND

NOT IOServiceState.E_ecutingl00Hz THEN

SAMPLE I. 0 WITH SystemProbe[ProbeNumber] ;

IOServiceState.Executing100Hz :- TRUE;

RequestTime :- ComputeIOLoadTime (ServiceRequest, IOServiceState)

+ OnDemandRequestDelay + RequestProcessing;

NEW (ProcessRequest) ;

WITH ProcessRequest _ DO

Function := IORequestSchedule;

IORequest := Service.Request;

END;

SubmitReques_roces sLug (ProcessRequest,

NOT ServiceRequest ^ .OnDemand, ServiceRequest ^.Frame,

B-70

RequestT/me, $erviceRequest ^.Priority) ;

ELSIF (ServiceRequest*.RequestType - ApplicationRequest) AND

{ServiceRequest^.Prlorlty - 9) AND

NOT IOServiceState.ExecutingSOHz THEN

SAMPLE 1.0 WITH Syst_robe_ProbeNumber] ;

IOServiceState. ExecutingSOHz :- TRUE;

RequestTime :- ComputeIOLoadTi_e (ServiceRequest, IOServiceState)

÷ On_dR_estDelay + R_questProcessing;

NEW (Proce amRequest) ;

WITH ProcessRequest ^ DO

Function :- IORequestSchedule;

IOReq_est :- ServlceRequest;

END;

SubmitReques tProces slng (ProcessRequest,

NOT ServiceRequest^.Or_d, ServiceReq_est^.Frame,

RequestTime, ServlceRequest ^.Priority} ;

ELSIF (ServiceRequest^.RequestType - ApplicationRequest) AND

(ServlceRequest^.Prlorlty - 8)

NOT IOServiceState.Executing25Hz THEN

SA_LE 1.0 WITH SysteRProbe[ProbeNumber] ;

IOServiceState.Executlng25Hz :- TRUE;

Req_estTime :- CoBputeIOLoadTime (ServiceRequest, IOServiceState)

+ On_dReq_estDe_ay + RequestProcessing;

NEW(ProcessRequest } ;

WITH ProcessRequest ^ DO

Function :- IORequestSchQdule;

IORequest :- ServloeReq_est;

END;

SuhmitReques tP roces sing (ProcessRequest,

NOT ServiceRequest^.OnDemand, ServiceRequest^.Frame,

RequestTime, ServiceRequest ^ .Priority) ;

ELSIF ServiceRequest^.RequestType - NetworkManagerRequest THEN

RequestTime :- CcmputeIOLoadTiae (ServiceRequest, IOServiceState) ;

NEW (ProcessRequest) ;

WITH ProcessRequest ^ DO

Function :- IORequestSchedu le;

IORequest :- ServiceRsquest;

END;

SubmitRequestProcessing(ProcessReq_est, FALSE, 0, Req_estTi_e,

ServiceRequest ^ .Priority) ;

END;

I IOCoupletionPoll:

RequestToService :- IOC_letionPoll;

IF RequestToService^.Request^.ResponseExpected THEN

UnloadResponse(RequestToService, IOServiceState, ResponseData} ;

TimeToUnloadRequest :- ComputeIOUnloadTime (ResponseData .Response) ;

IF RequestToService^.RequestType - ApplicationReq_est THEN

B-71

(* 1/27/88 *)

(* 1127188 *)

(* 1/27/88 *}

ResponseCompletion (ResponsaData .Regp_nae) ;

CheckNetworksForFault (ResponseData .Response,

IOServicaState };

(* Release semaphore and check for a higher priority

request that is waiting for start IOS. *)

Releasa(PendingStatus);

IF Pe,cilngStatus > RequestToService^.Requeat^.Priority THEN

NEW(Pend/ngIOProcessing);

PendinglOProcessing^.Function :- StartPend/nglO;

NextRequest(PendingRequest);

PendingIOProcesslng^.RequestStatus :- PendingRequest^.ExecutionStatus;

DISPOSE(PendingRequest);

NEW(ProcessingStartPendingIO);

WITH ProcessingStartPendingIO ^ DO

Priority :- PendingStatus;

ProcessingReq_ired :- 0.0;

WriteData :- FALSE;

ProcessID :- 'Start Pending i/O';

Data :- PendingIOProcesaing;

END;

NOW outport[IOPPort]A.ProcessorReq_est <- ProcessingStartPendingIO;

END;

NEW(ResponseDataProcessing);

WITH ResponseDataProcessing ^ DO

Function :- IOResponseSchedule;

IOResponse :- ResponseData.Response;

END;

_tUnloadIORequest(ResponseDataProcessing,

TimeToUnloadRequest, RequestToService^.Reqgeat^.Priority};

ELSIF RequestToService^.RequestType - NQtworkManagerRequest THEN

NEW(ResponseDataProcessing);

WITH ResponseDataProcessing ^ DO

Function :- IOResponseSchedule;

IOResponse :- ResponseData.Response;

END;

SL_mitUnloadIORequest(ResponseDataProcessing,

TimeToUnloadRequest, RequestToService^.Request^.Priority);

ELSIF RequestToService^.RequestType - MonitorForFault THEN

IF ResponseData.Response^.Kesponse^.AllFailed THEN

NEW(ServiceNetworkRequest);

WITH ServiceNetworkRequest ^ DO

ServiceRequest :- SwitchRootLink;

(* This section of code uses internal workings
of DENET to determine the Fa/ledRootNode.

IT IS CONFIGURATION DEPENDANT. *)

CurrentNodeID :R IOServiceState.ActiveRootLink[2];

FailedRootNode :- GetOutNode(2};

Cu_rentNodeID :- MyNodeID;

FailedRootNumber :- FailRootLink(IONetworkConnections(NetworkID2],

IOServiceState.ActiveRootLink[NetworkID2]);

B-72

IOServlceState.ActiveRootLinkINetworkID2]

:- SwitchRootLinks(IONetworkConnections[NetworkID2],

NetworkID2, FailedRoot_r);

IF IOServiceState.ActlveRootLink[NetworkID2] - 0 THEN

(* A good root link cannot be found. This

network will not be returned to service. *)

WrlteString(ParamOut, '_etwork 2 has no more root links.");

WriteLn(ParamOut};

WriteStrlng(ParaBOut, "Continue operation with Network 2 out of service. ");

NriteLn(ParamOut);

END;

(* This section of code uses internal workings
of DEh_BT to determine the FailedRootNode.

IT IS CONFIGURATIC_ DEPENDANT. *)

CurrentNodeID :- IOServiceState.ActiveRootLink[2] ;

NewRootNode :- GetOutNode (2) ;

CurrentNodeID :- MyNodeID;

END;

(* Make a request to the IOP for execution time

to switch root links. *)

NEW(RootLinkSwitchProcessing};

RootLinkSwitchProcessing^.Function :- NetworkRepair;

RootLinkSwitchProcessing^.RepairData :- ServiceNetworkRequest;

NEN(ProcessingNetworkRepair);

WITH ProcessingNetworkRepalr ^ DO

Priority :- IOSystemServic_Priority;

ProcessingRequired :- TimeToUnloadRQquest + SwitchRootLinkProcessing;

WritaData :- FALSE;

ProcesslD :- 'Switch Root Link Processing';

Data :- RootLinkSwitchProcessing;

END;

ReleaseChai_sponseMemory(ResponseData.Response^.Response);

DISPOSE(ResponseOata.Response); (* PRR *)

ELSE

NEW(ServiceNetworkRequest);

WITH ServiceNetworkRequest ^ DO

ServiceRequeat :- RepairFault;

MonitorChainResponse :-ResponseData.Response;

END;

NEW(RepairNetworkProcassing);

RepairNetworkProcessing^.Function :- NetworkRepair;

RepairNetworkProcessing^.RepalrData :- ServiceNetworkRequest;

NEN(ProcessingNetworkRepair);

WITH ProcessingNetworkRepair ^ DO

Priority :- IOSystemServicePriority;

ProcessingRequired :- TimeToUnloadRequest;

WriteData :- FALSE;

ProcessID :- 'Repair Network Processing';

Data :- RepalrNetworkProcessing;

END;

END;

_73

(* 1/27/88 *)

(* 1/27188 *)

(* 1/27/88 *)

(* 1/27/88 *)

NOW outport(IOPPort]^.ProcessorRequest <- ProcessingNetworkRepair;

END;

ELSE

(* The request for this poll Just contains output

transactions with no input transactions, check

for any pending request that is higher priority. *)

(* Deleted Lines *)

(* Release semaphore and check for a higher priority

request that is waiting for start IOS. *)

Release(PendingStatus);

IF PendingStatus > RequestToServlce^.Request^.Priority THEN

_W(PendingIOProcessing);

Pend/ngIC_rocsssing^.Function :- StartPendingIO;

NextRequest(PendingRequest);

PendingIOProcessing^.RequestStatus :- PendingRequest^.ExecutionStatus;

DISPOSE(Pend/ngRequest);

NEW(ProcessingStartPendingIO);

WITH ProcessingStartPendingIO ^ DO

Priority :- PendingStatus;

ProcessingRequired :- 0.0;

WriteData :- FALSE;

ProcessID :- 'Start Pending I/O';

Data :- PendingIOProcesslng;

END;

NOW outport(IOPPort]^.ProcessorRequest <- ProcessingStartPend/ngIO;

END;

NEW(ResponseDataProcsssing);

WITH ResponseDataProcessing ^ DO

Function :- OutputResponseSchedule;

Rate :- RequestToService^.Request^.Identifier;

END;

NEW(ProcessingOutputResponse);

WITH ProcessingOutputResponse ^ DO

Priority :- RequestToServiceA.Request^.Priority;

IF (IOServiceState.NetworkHealth[1] - InService) AND

(IOServiceState.NetworkHealth[2] - InService) THEN

ProcessingRequired :- ResponseCompletionProcessing

+ (2.0 * EndOfChainProcessingOverhead);

ELSE

ProcessingRequired :- ResponseCompletionProcessing

÷ EndOfChainProcessingOverhead;

END;

WriteData

ProcessID

Data

:- FALSE;

:- 'Output Repsonse Processing';

:- ResponseDataProcesslng;

END;

NOW outport{IOPPort]^.ProcessorRequest <- ProcessingOutputResponse;

E2qD;

B-74

DISPOSE(Req_estToService); (* PRB *)

I RtnNetworkToService:

(* This event is used to return network 2 to service

after the NetworkManaglr has repaired it. *}

NewNetworkStata :- ActlvePort^.RtnNetworkToService;

DataColleotlonRecord.EventID :- 29;

DataCollect ionRecor d. Siuul&tlcnTime :- clock;

DataCo llectionRecord. Frequency :- NonCyclic;

DataColleotlonRecord.NonCy¢i/cData.N Varlation :- NetServiceChange;

DataCollectlo_Record.NonCyclicData.NetworkID :- NewNetworkStat e ^.NetworkID;

NriteDataElementType (DataCollectlo_Record) ;

WITH NewNetworkState ^ DO

FaultMonitor2 ^.Chain :- MonitorChain;

Fault.Monitor2 ^ .RequestTimeoutValue :- ComputeChainTimeout (0,

QSize (FaultMonitor2 ^ .Chain ^ .TransactionQueue)) ;

TimeNetworkOutOfService :- clock - NetworkOutOfServiceTime [NetworkID] ;

WriteLn (ParamOur) ;

WriteString(ParamOut, " Network 2 was out of service for ");

WriteReal (ParamOur, TimeNetworkOutOfService, 0) ;

WriteString (ParamOur, " seconds. "} ;

WriteLn (ParamOur };

WrlteLn (ParamOur) ;

IOServiceState.NetworkHealth [Network]D] :- InService;

NOW outport [ControlsPort] ^.ServiceAvailable <- TRUE;

END;

DISPOSE(NewNetworkState) ; (* PRB *)

J ProcessorResponse :

ProcessResponse :- ActivePort^.ProcessorResponse;

NetworkData :,, ProcessResponse^. Data;

W_TH NetworkData ^ DO

CASE Function OF

IORequestSchedule:

IF IORequest^.RequestType - ApplicationRequest TH_N

ExecuteApplicationRequest (IORequest, IOServiceState} ;

ELSE

Exec_teManager2Request (IORequest, IOServiceState) ;

END;

I IOResponseSchedu le:

IF IOResponse^.ResponseType - ApplicationResponse THEN

REPORT "%d" IOResponse^.Identifier TAGGED "Finish IOP Activity";

CASE IOResponse ^.Identifier OF

I00 : NOW outport [ApplicationPort [i]]^.

ApplicationResponse <- IOResponse;

IOServiceState.Executingl00Hz :- FALSE;

_75

(* 1127/88 *)

(* 1/27/88 *)

(* 1/27/88 *)

(* 1127/88 *)

(* 1/27/88 *)

(* 1/27/88 *}

(* 1/27/88 *)

(* 1/27/88 *)

(* 1/27/88 *)

I 50: NOW outport[ApplicatlonPort[2]] ^.

ApplicationResponse <- IOResponse;

IOServiceState.Exec, tingSOHz :- FALSE;

I 25: NOW outport[ApplicationPort[3]] ^.

ApplicationResponse <- IOResponse;

IOServiceState.Executing25Hz :- FALSE;

END;

IF (NOT IOServiceState,Executingl00Hz} AND

(NOT IOServiceState.ExecutingSOHz) AND

(NOT IOServiceState.Executing25Hz) THEN

SAMPLE 0.0 WITH SystemProbe[ProbeNumber];

END;

(* Check for any pending requests.

SemaphoreIdle(IOSystemStatus);

IF IOSystemStatus THEN

,)

Release(PendingStatus);

IF (PendingStatus - I0} OR

((PendingStatus - 9) AND

(NOT IOServiceState,Executingl00Hz}) OR

((PendingStatus - 8} AND

(NOT IOServiceState,Executingl00Hz) AND

(NOT IOServiceState.Exe_tlngSOHz)) THEN

NEW(PendingIOProeessing);

PendinglOProcessing^.Function :- StartPendingIO;

NextReq_est(PendingReql/eat};

PendingIOProcessing^.ReqgestStatus :- PendlngRequest^,ExecutionStatus;

DISPOSE(PendingRequest};

NEW(ProcessingStartPendingIO);

WITH ProcessingStartPendingIO ^ DO

Priority :- PendingStatus;

ProcessingRequired :- 0.0;
WriteData :- FALSE;

ProcessID :- 'Start Pending I/O';

Data := PendingIOProcessing;

END;

NOW outport[IOPPort]^.ProcessorRequest <- ProcessingStartPendingIO;

END;

END;

ELSE

NOW outport[NetworkManager2Port] ^ .

IOManager2Response <- IOResponse^.Response;

IOResponseA.Response :- NIL; (* MJS *)

DISPOSE(IOResponse}; (* PRB *)

E_;

I OutputResponseSchedule:

REPORT "%d" Rate TAGGED "Finish IOP Activity";

CASE Rate OF

i00:

IOServiceState.Executingl00Hz :- FALSE;

_76

(* 1/27/88 *)

(* 1127/88 *)
(* 1127108 *)

(* 1/27/88 *)

(* 1/27/88 *}

(* 1/27/88 *}

(* 1/27/88 *)

(* 1/27/88 *)

(* 1/27/e8 *)

(* 1/27/88 *)

[50:

IOServiceState.Executing50Hz :- FALSE;

I 25:

IOServiceState.Executing25Hz :- FALSE;

END;

IF (NOT IOServiceState.Executingl00Hz) AND

(NOT IOServlceState.ExecutingSOHz) AND

|NOT IOServlceState.Executing25Hz) THEN

SAMPLE 0.0 WITH SystemProbe[ProbeNumber] ;

END;

(* Check for any pending requests. *)

$emaphoreIdle (IOSystemStatus) ;

IF IOSystemStatus TH_

Release (PendingStatus) ;

IF (Pend/ngStatus- 10) OR

((PendingStatus - 9} AND

(NOT IOServlceState.Executingl00Hz}) OR

((Pend/ngStatus - 8) AND

(NOT IOServiceState.Executingl00Hz) AND

(NOT IOServiceState.ExecutingSOHz) } THEN

NEW (PendingIOPro ces sing);

Pend/ngIOProcessing ^.Function :- StartPendingIO;

NextRequest (PendingRequest) ;

PendingIOProcess ing ^ .RequestStatus :- PendingReques t ^ .ExecutionStatus;

DISPOSE (PendingRequest) ;

NEW (ProcessingStartPendlngIO) ;

WITH ProcessingStartPendingIO ^ DO

Priority "- PendingStatus;

ProcessingRequired :- 0.0;
WriteData :- FALSE;

ProceseID :- 'Start Pending I/O';

Data :- PendingIOProcessing;

END;

NOW outport[IOPPort] ^.ProcessorRequest <- ProcessingStartPendingIO;

END;

END;

[StartPendingIO:

Star tIOSs (Request Status, IOServiceState) ;

f StartFaultMonitor:

ExecuteManager 2Reque st (FaultMonit or 2, IOServiceState) ;

I NetworkRepa/r :

IF Net_rkData ^ .RepairData ^ .ServiceRequest -
SwitchRoot Link THEN

WITH DataCollectionRecord DO

Event ID :- 29;

SimulatlonTime :- clock;

Frequency :- NonCyclic ;

NonCyclicData.NVariation :- NetServiceChange;

_77

NonCyc licData .NetworkID :- 2;

END;

WriteDataEl_entType (DataCollemtionR_ord) ;

TimeNotworkOutOfService :- clock - NatworkOutOfServiceTime 12];

WriteLn (ParamOut) ;

WriteString(ParamOut, " Net_rk 2 was out of service for "} ;

WriteRoal (ParamOut, TimeNetworkOutOfService, 0) ;

NriteString(ParamOut, " seconds.") ;

WriteLn (ParamOut) ;

WriteLn {ParamOut);

IOServiceState .NetworkHealth [2] :- InService;

NOW outport [ControlsPort] ^.ServlceAvailable <- TRUE;

END;

NOW outport [NetworkManager2Port] ^.

ManagerServiceRqst <- NetworkData^.RepairData;

ELSE

WriteString (ParamO_t, "Unexpected Response from the IOP in the I/O Service. ") ;

WriteLn (ParamOut) ;

END;

END;

DISPOSE (NetworkData) ;

DISPOSE (ProcessResponse };

J Reset:

SetSemaphoreIdle;

(* Reinitialize all network connections to idle. *)
FOR NetworkCounter :- I TO NumberOfNetworks DO

FOR InterfaceCounter :- 1 TO N%u_berOfIOSPerChannel DO

IF IONetworkCounections [NetworkCounter].

NetworkConnections [InterfaceCo_nter].GPCAddzess

<> 0 THEN

IONetworkConnections INetworkCounter].

ConnectionStatus(InterfaceCounter] :- Idle;

ELSE

(* This simulation run does not have an interface

with this ID, set its status to failed. *}

IONetworkConnections (NetworkCounter] .

ConnectionStatus (InterfaceCounter] :- Failed;

END;

END;

END;

(* Reinitialize Active interfaces. Since all hardware should

be "good", the first interface will be used. *}

IONetworkConnectionsIl].ConnectionStatus[l] :- Active;

IONetworkConnectionsI2].ConnectionStatus(l] :- Active;

IOServiceState.NetworkHealth[l) :- InService;

IOServiceState.NetworkHealth(2] :- InService;

IOServiceState.ActiveRootLink[l] :- IONetworkConnections(l].NetworkConnections(l].GPCAddress;

_78

END;

END;

END IOService.

IOServiceState. ActlvQRootLink 12]

IOServiceState, Executingl 00Hz

IOSorvlceState .Executing50Hz

•IOServiceState, Executing25Hz

I ProbeReset:

(*
* check if the io system ks busy by looking at the last sample taken with the probe

*)
IF SystGmProbe[ProbeNu_ber]^.ProbeValue - 1.0 THEN

ClearProbe (SystemProbe [ProbeNumber]} ;

SAMPLE 1.0 WITH SystemProbe[ProbeNumber];

ELSE

ClearProbe {System2robe [ProbeNumber]) ;

SAMPLE 0.0 WITH SystemProbe[ProbeNumber] ;

:- IONetworkConnections [2] .NetworkConnections Ii].GPCAddress i

:- FALSE;

:- FALSE;

:- FALSE;

END;

_79

UTILITIES

B-80

DEYINITIONMODULE Utilities;

FRC_ IOS]I_POI_ Cha/nType, ChainStat_sData;

FRQM BusMessag IMPORT PortNameType, PortEnableRegisterType;

FROM TypeConst IMPORT ChannelIDType, StatusType, NodaArrayType,

NodeStatusArray, PortStatusArray, Cha_nelStatusRecord;

EXPORT _ALIFIED ClearPortStatusArray, t_dateLinkStatus, SetNodeStatusFailed,

ConvertPortStatusToEnable, InitiallzeStatusVariables,

NodeslnThisSimulation, Cosp_teChainTimeout,

ManagerChainUnloadTime;

**

(* This proctNiure computes the time al_nt to perfo_ the unloading

of a network manager chain from the OPM in the IOS to the IOP. *)

PROCEDURE ManagerChalnUnloadTime(Responae : ChainStatusData) :REAL;

**

(* This procedure will return an azray of type PortStatusArray

with all the elements set to IdlePort. *)

PROCEDURE ClearPortStatusArray(VAR PortStatus : PortStatusArray};

PROCEDURE UpdateLinkStatus(VAR StatusArray : NodeStatusArray;

spawningNode : INTEGER;

SpawningPort : PortNameTypo;

TargetNode : INTEGER;

TargetPort : Per tNameType;

LinkStatus : StatusType} ;

PROCEDURE SetNodeStatusFailed(VAR $tatusArray : NodeStatusArray;

NetworkConnections : NodeArrayType;

FailedNoda : INTEGER);

**

(* This procedure takes an array of type PortStatusArray and

converts it to a PortEnableRegister. If an elment in the

PortStatusArray is Active then the corresponding element in

the PortEnableRegister is set to Enabled, otherwise the

element is set to Disabled. *}

PROCEDURE ConvertPortStatusToEnable(VAR PortStatus : PortStatusArray;

VAR EnableRegister : PortEnableRegisterType};

**

(* This procedure will initialize the variables that the network manager

needs to maintain the network. *)

PROCEDURE InitializeStatusVariables(NodeConnections : NodaArrayType;

VARNodeStatus : NodeSLatusArray;

VAR ChannelStatus : ChannelStatusRecord};

(* This procedure will read the node connections array and determine

how many nodes are in the current simulation. This number will be

0 < NodesInSimulation <- NumberOfNodea. *)

PROCEDURE NodesInThisSimulation (NodeConnections : NodeArrayType}

: INTEGER;

**

(* This procedure computes the time to execute a chain based on the

number of normally c_pleting transactions and transactions actions

that time out. A time is also included that represents the turn

around time between transactions at the IOS. *)

_81

PROCEDURE ComputeChainTinoout (NormalComplotions : INT_R;

TimooutComplotions : INTEGER) :REAL;

8_2

UTILITIES

B-83

IMPL_ATION M_ULE Utilities;

FRCH BusMeesag ID_C_T BusMessageType, PortNameType,

PortEnableRogisterType, PortStateType, NulberOfPortsPerNode,

NumberOfNodes, MakeNodeConfigurationCommand;

FROM TypeConet IMPORT ChannelIDType, StatusType, PortConfiguratlonType,

NodeArrayType, NodeStatusArray, PortStatusArray,

ChanneIStatusRecord, NetworkElementType;

FROM CentralDB IMPORT FindNodaNmaber;

FROM IOS I_T ChainType, ChainStatueData, TraneactionType,

InputYrameType, TimeOut IndicatorType;

FRQM InO_t ID_ORT WriteLn, WriteString, WriteReal, WriteInt;

FROM Storage IMPORT ALLOCATE;

FRCM Q_eueM IMPORT InitQ, QSize, Qlnsert, QSucc, FirstQ;

FROM MathLib0 IMPORT rood;

CONST TransactlonTimeO_t

FixedChainUnloadTime

DataExchangeUnloac_rime

One_4111iSecond

ManagerDXResponseLength

= 0.000500; (* sac *)

- 0.000050; (* sac *)

- 0.000004; (* sac/byte *)

- 0.001;

- 13; (* bytes *)

**

PROCEDURE ManagerChainUnloadTime(Response : ChainStatusData) :REAL;

VAR UnloadTime :-REAL;

TraneactionUnloadTime : REAL;

NumberOfInputFrames : INTEGER;

BEGIN

N_rOfInputFrames :- QSize (Response ^ .InputFrameQueue) ;

TransactionUnloadTime :- FLOAT (Num_erOflnputFrames *

ManagerDXResponseLength } *

Dat aExchangeOnloadTime;

UnloadTime :- FixedChainUnloadTime + TransactionUnloadTime;

RETURN (UnloadTime) ;

END Manag erChainUn loadTim a;

(* This procedure will return an array of type PortStatusArray

with all the elements sat to IdlePort. *)

PROCEDURE ClearPortStatusArray(VAR PortStatus : PcrtStatusArray);

VAR Portlndex : PortNameType;

BEGIN

FOR PortIndax :- 1 TO NumberOfPortsPerNode DO

PortStatus [PortIndex] .Status :- Idle;

PortStatus [PortIndax] .Direction :- Inboard;

END;

END C learPor t StatusArray;

**

PROCEDURE UpdateLinkStatus (VAR StatusArray : NodeStatusArray;

SpawningNode : INTEGER;

B_4

SpawningPort : Pot tNameType;

TargetNode : I_EG_R;

TargetPort : PortNameType;

LinkStatue : StatusType) ;

VAR SpawniugNodeNumber : INTEGER;

TargetNodeN%uRber : INTEGER;

BEGIN

SpawningNodeNumber :- FindNodeNQmber (SpawningNode) ;

TargetNodeNumber := FindNodeNm_ber {TargetNode) ;

WITH StatusArray[SpawningNodeNumber] .PortStatus [SpawningPort] DO

IF LinkStatus - Active THEN

Status :- Active;

Direction :- Outboard;

ELSE

Status :- LinkStatus;

END;

END;

WITH StatusArray[TargetNodQNumber] .PortStatus [TargetPort] DO

IF LinkStatus - Actlvm T_

Status :- Active;

Direction' :- Inboard;

ELSE

Status :- LinkStatus;

END;

END;

END UpdateLinkS tatus;

PROCEDURE SetNodeStatusFailed(VAR StatusArray : NodeStatusArray;

NetworkConnections : NodeArrayType;

FailedNode : INTEGER) ;

VAR NodeNumber : IN--R;

AdjacentNodeNumhar : INTEGER;

Port Index : PortNameType;

AdjacentPort : PortNameType;

BEGIN

NodeNumber :- FindNodeNumber (FailedNode) ;

(* Set status of node to failed. *)

StatusArray [NodeNumber] .Status :- Failed;

(* Set status of ports on this node to failed and the

ports on any adjacent node to failed. *)
FOR PortIndex :- I TO NumberOfPortsPerNode DO

StatusArray[NodeNumber] .PortStatus[PortIndex] .Status :- Failed;

WITH NetworkConnections [NodeN_er] .PortArray[PortIndex] DO

CASE AdjacentElement OF

8_5

GPC, DIU, None:

I Node:

Ad jaoentNodeNumber :- FindNodeNumber (NodeAddress) ;

AdjacentPor t :- Port;

StatusArray (AdjacentNodeNumber] .PortStatus

(AdjacentPort] .Status :- Failed;

END;

END;

END;

END SetNodeStatusFailed;

**

(* This procedur$ takes an array of type PortStatusArray and

converts it to a PortEnableRegister. If an element in the

PortStatusArray is Active then the corrssponding element in

the PortEnableRegister is set to Enabled, otherwise the

element is set to Disabled. *)

PROCEDURE ConvertPortStatusToEnable (VAR PortStatus : PortStatusArray;

VAR EnableRegister : PortEnableRegisterType);

VAR PortIndex : PortNameType;

BEGIN

FOR Portlndex :- i TO Number0fPortsPerNoda DO

IF PortStatus[PortIndex] .Status - Active THEN

EnableRegistsr [PortIndex] :- Enabled;

ELSE

EnableRegister [PortIndex] :- Disabled;

END;

END;

END ConvertPort StatusToEnable;

**

(* This procedure will initialize the variables that the network manager

needs to maintain the network. *)

P),0CEDURE InitializeStatusVariables (NodeConnectlons : NodeArrayType;

VAR NodeStatus : NodeStatusArray;

VAR ChannelStatus : ChannelStatusRecord) ;

VAR Nodelndex : INTEGER;

ChannelIndex : Chann$1IDType;

Port Index : PortNameType;

BEGIN

FOR Nodelndex :- i TO Number0fNodes DO

WITH NodeStatus [NodeIndex] DO

Address :- HodeConnections (NodeInde_.] .NodeAddress ;

Status := Idle;

ClearPortStatusArtay (PortStatus) ;

END;

END;

_86

ChannelStatus.GP_ess "- I00;

ChannelStatus. ChannellD :- A;

ChanQelStatus. Status :- Idle;

END InitializeStatusVariables;

**

(* This procedure coaputes how many nodes are in the current simulation

based on the NodeAddress for each node being d/fferent than the

NodeNumber. The Central Database initializes its network description

so that each node n_ber is the name as the node address. If

this strategy ks not continued in the future, this routine may

need to be changed. *)

PROCEDURE NodesInThisSimulation (Nod_onnections : NodeArrayType)

: INTEGER;

VAR NodeCount : INTEGER;

NodeIndex : INTEGER;

BEGIN

NodeCount :- 0;

FOR NodeIndex :- i TO NumberOfNodes DO

IF Node Index <> INTEGZR (NodeConnectlons (NcdeIndex].NodeAddress) THEN

NodeCount :- NodeCount + 1;

END;

END;

RETURN (NodeCount) ;

END Nodes InThis Simulation;

**

(* Since the network manager is the only one to use this routine,

the returned time will be based on all transactions timing out

and then adding one millisecond to account for transaction turn

around and transaction transmission time. *}

PROC@DURE ComputeChainTimeout (NormalCompletlons : INTEGER;

TimeoutComzpletions : INTEGER) :REAL;

VAR ExecutionTime : REAL;

BEGIN

IF ((Normalcompletions + TimeoutCompletions) MUD 2) - 0 THEN

RETURN (FLOAT (NormalCompletions + TimeoutCompletions)

* TransactioaTimeOut) + OneMilliSecond;

ELSE

RETURN (FLOAT {TRUNC (((FLOAT (NormalCompletions + TimeoutCompletions)

* TransactionTimeOut)" + OneMilliSecond) / OneMilliSecond))

* OneMilliSecond) ;

END;

END ComputeChainTimeout ;

**

END Utilities.

8_7

GROWNET

B-88

DEFINITION MODULE GrowNet;

FRQM lOService IMPORT IORoquestType;

FROI4 TypoConst IMPORT PortStatusArray, NodeStatusArray, NodeArrayType;

FRCM BusMessag IMPORT PortNameTypo;

EXPORT QUALIFIED GROHTOROOTNODE, TransactlonTimeOut, NetworkManagerPriority,

EnabloLink, DeletoNodeFr_oNotwork, AddDIUToNetwork,

AddGPCToNotwork, DisabledTransmitTest, DisabledRetransmitTest,

Reset Con figur ationCcaaand, MakeMonitorRequost;

CONST TransactlonTimeOut - 0.000500;

NetworkManagorPriority - i;

**

PROCEDURE GROWTOROOTNODE (RootNodaAddress : INTEGER;

RootNodelnboardPort : PortNamoType;

NodeStatus : NodeStatusArray;

VAR IORequest : IC_equestType) ;

**

PROCEDURE EnableLink (SpawningNode : INTEGER;

TargetNode : INTEGER;

NodeStatus : NodoStatusArray;

VAR AddNodeIOReq_est : IORequostType);

**

PROCEDURE DeleteNodeFro_Network (SpawningNode : INTEGER;

SpawningNodeOutboardPort : PortNameType;

TargetNodo : INTEGER;

TargetNode InboardPort : PortNamoType;

NodeStatus : NodeStatusArray;

VAR DoleteNodeIORequest : IORequestType) ;

**

PROCEDURE AddDIOToNetwork (Node : INTEGER;

Port : PortNsmoType;

Nodestatus : NodoStatusArray;

VAR 10Request : IORoquestType);

**

PROCEDURE AddGPCToNetwork (Node : INTEGER;

Port : PortNamoType;

NodeStatus : NodeStatusArray;

VAR IOReq_lest : IORequestType);

**

PROCEDURE DisabledTransmitTest(TargetNode : INTEGER;

NodeStatus : NodeStatusArray;

VAR IORequest : IORequestType);

**

PROCEDURE DisabledRotransmitTest (Test.Node : INTEGER;

TargetNode : INTEGER;

NodeStatus : NodeStatusArray;

VAR IORequest : lORoquestTypo);

**

PROCEDURE ResetConfiqurationCommand (TestNode : INTEGER;

NodeStatus : NodeStatusArray;

VAR IOReq_est : IORequestType);

B_9

PROCEDURE MakeMonitorRequest (NodeConnection : NodeArrayType) : IORequestType;

**
END GrowNet.

B-90

GROWNET

Y*

B-91

IMPL_ATION MODULE GrowNet ;

FRCM IOService I_ORT IORequestTypm, RequestActlvityType;

FROM IOS IMPORT ChainType, TransactionType;

FROM CentralDB IMPORT FindNodeNumber;

FRCt4 TypeConst IMPORT NodeStatusArray, NodeArrayType;

FROM BusMessag IMPORT PortNameType, PortEnahleRagisterType,

BusMessageType, DIUCommandType, NumberOfNodes,

MakeNodeConf igur at ionCo_nd, MakeMonitorCcmmand;

FRCM Utilities I_ORT Convert.PortStatusToEnable, ComputeChainTimeout;

FROM QueueM IMPORT InitQ, QInsert, QSize, dNEW;

FROM Storage IMPORT ALLOCATE;

FROM SYST_ IMPORT SIZE;

FROM InOut IMPORT WriteString, Writelnt, WriteReal, WriteLn;

**

PROCEDURE GROWTOROOTNODE (RootNodeAddress : INTEGER;

RootNodelnboardPort : PortNameType;

NodeStatus : NodeStatusArray;

VAR lORequest : lORequestType) ;

CONST GrowToRootNodeIdentifier = 305;

VAR Transaction

Command

PortEnableRegister

RootNumber

BEGIN

: TransactionType;

: BusMessageType;,

: PortEnableRegisterType;

: INTEGER;

dNEW(IORequest, SIZE(IORequest^));

IORequest^.refcnt :- 0;

IORequest^.copycnt :- i;

IORequest^.nextq :- NIL;

dNEW(IORequest^.Chain,SIZE(IORequest^.Chain^));

IORequest^.Chain^.refcnt :- 0;

IORequest^.Chain^.copycnt :- I;

IORequest^.Chain^.nextq :- NIL;

dNEW(Transaction, SIZE(Transaction^));

Transaction^.refcnt :- 0;

Transaction^.copycnt :- i;

Transaction^.nextq :- NIL;

IORequest^.Chain^.TransactionQueue :- InitQ("TransactionQueue", FALSE, 0);

Root.Number :- FindNodeNumber (RootNodeAddress) ;

(* Now convert Configuration into a Port Enable Register command. *)

Convert2ortStatusToEnable(NodeStatus[RootNumber].PortStatus, PortEnableRegister);

(* Generate the command to grow to the Root Node. *)

Command :- MakeNodeConfigurationCommand(RootNodeAddress, PortEnableRegister);

(* Generate the transaction. *)

WITM Transaction ^ DO

Identifier :_ RootNodeAddress;

TimeOutValue := TransactionTimeC_t;

OutputFrame :- Command;

END;

8-92

(*

(* Enter the transaction on the Transaction Queue. *)

OInsert(Transaction, IORequest^.chain^.TransactionQueua, FALSE);

INSERT Transaction LAST IN IORequeet^.Chain^.TransactionQueue;

WITH IORequest^.Chain ^ DO

ChainIdentifier :- GrowToRoot/_ode Ident ifier;

NumbarOfTransactions :- QSIze(IORequest ^.Chain ^.TransactionQueue} ;

END;

WITH IORequest A DO

Priority :- NetworkManagerPriority;

OnDemand :- FALSE;

RequestTimeo, tValue :- ComputeChainTimeout (0, Chain ^ .NumberOfTransactions) ;

RequestType :- NetworkManagarRequest;

END-

END GROWTOROOTNODE;

**

PROCEDURE EnableLink(SpawningNode • INTEGER;

TargetNode : INTEGER;

NodeStatus : NodeStatusArray;

VAR AddNodeIORequest : IORequestType};

CONST AddNodeToNetworkChainIdentifier - 306;

VAR Transaction : TransactionType;

Co_mand : BusMessageTypa;

PortEnableRegistar : PortEnableRegisterT_pe;

SpawningNu_bar : INTEGER;

TargetNumber : INTEGER;

BEGIN

SpawningNumber :- FindNodeNumber (SpawningNoda) ;

TargetNtu_r :- FindNodeNumber (TargetNode) ;

dNEW (AddNodaIORequest, SIZE (AddNode IORequast ^));

AddNodeIORequest^.refcnt :- 0;

AddNodeIORequest ^.copycnt :- I;

AddNodeIORequest ^.neXtq :- NIL;

dNEW (AddNodeIORequest ^.Chain, SIZE (AddNodeIORequest ^.Chain ^));

AddNodeIORequest^.Chain^.refcnt :- 0;

AddNodeIORequest ^ .Chain ^ .copycnt :- 1;

AddNodeIORequest ^ .Chain ^ .nextq :- NIL;

AddNodeIORequest ^ .Chain ^ .TransactionQueue :- InitQ ("TransactionQueue", FALSE, 0) ;

(* Convert the spawning node's port status to a Port Enable Register. *)

ConvertPortStatusToEnable (NodeStatus ISpawningNumber] .PortStatus, PortEnableRegister) ;

(* Generate command for Spawning node to turn on outboard port. *)

Co_mand :- MakeNodeConfigurationCommand(SpawningNode, PortEnableRegister) ;

dNEW (Transaction, SIZE (Transaction ^));

Transaction^.refcnt :- 0;

Transaction^.copycnt :- I;

Transaction^.nextq :_ NIL;

WITH Transaction ^ DO

Identifier :- SpawningNode;

TimeOutValue :- TransactionT/me_t;

OutputFrame :- Command;

END;

_93

(*

*)

(*

*)

(* Enter the transaction on the Transaction Queue. *)

QInsert(Transaction, AddNodeIORequest^.Chain^.TransactionQueue, FALSE);

INSERT Transaction LAST IN AddNodeIORequest ^ .Chain ^ .TransactionQueue;

(* Generate a transaction for target node to turn on its inboard port. *)

(* Convert the target node's port status to a Port Enable Register. *}

Convert2 ort StatusToEnable (NodeStatus [TargetNumber]. PortStatus, PortEnableRegister) ;

(* Generate command for Spawning node to turn on outboard port. *)

Command :-MakeNodeConfigurationCommand(TargetNode, PortEnableRegister);

dNEW (Transaction, SIZE (Transaction ^) } ;

TransactionA.refcnt :- 0;

Transaction^.copycnt := i;

Transaction^.nextq :- NIL;

WITH Transaction ^ DO

Identifier :- TargetNode;

TimeOutValue :- TransactionTimeOut;

OutputFrame :- Command;

END;

(* Enter the transaction on the Transaction Queue. *)

QInsert (Transaction, AddNodeIORequest ^.Chain^. TransactionQueue, FALSE) ;

INSERT Transaction LAST IN AddNodeIORequest ^ .Chain ^ .TransactionQueue;

WITH AddNodeIORequest^.Chain ^ DO

ChainIdentifier

NumberOfTransactions

END;

WITH AddNodelORequest ^ DO

:- AddNodeToNetworkChainIdentifier;

:- QSize (AddNodeIORequesta.Chaina.TransactionQueue);

END;

Priority := NetworkManagerPriorlty;

OnDemand :- FALSE;

RequestTimeoutValue :- ComputeChainTimeout(0, Chain^.N_nberOfTransactions);

RequestType :- NetworkManagerRequest;

END EnableLink;

PROCEDURE DeleteNodeFromNetwork(SpawningNode : INTEGER;

SpawningNodeOutboardPort : PortNameType;

TargetNode : INTEGER;

Tar getNode Inboar dPort : PortNameType;

NodeStatus : NodeStatusArray;

VAR DeleteNodeIORequest : IORequestType);

CONST AddNodeToNetworkChainIdentifier - 307;

VAR Transaction : TransactionType;

Command : BusMessageType;

PortEnableRegister : PortEnableRegisterType;

SpawningNumber : INTEGER;

TargetNumber : INTEGER;

BEGIN

dNEW(DeleteNodeIORequest,SIZE(DeleteNodeiORequest^));

DeleteNodeIORequest^.refcnt := 0;

_94

(*

*)

(*

*)

DeleteNodeIORequest ^ .copycnt :- i;

DeleteNodeIORequest^.nextq :- NIL;

thrEW (DeleteNode IOReques t ^. Chain, S I ZE (DeleteNode IOReques t ^. Chain ^)) ;

DeleteNodeIORequest^.Chain^.refcnt :- 0;

DeleteNodeIORequest^.Chain^.copycnt :- I;

DeleteNodeIOReques t ^ . Chain ^ .nextq :- NIL;

DeleteNodeIORequest ^ . Chain ^ .TransactionQueue :- InitQ ("TransactionQueue", FALSE, 0) ;

(* Generate a transaction for target node to turn off its inboard port.*)

TargetNumber :- FindNodeNumber (TargetNode) ;

(* Convert the target node's port status to a Port Enable Register. *)

ConvertPortStatusToEnable (NodeStatus [TargetNumber] .PortStatus, PortEnableRegister) ;

(* Generate command for Spawning node to turn on outboard port. *)

Command :-MakeNodeConfiqurationCommand(TargetNode, PortEnableRegister);

dNEW (Transaction, SIZE (Transaction ^)) ;

Transaction ^. refcnt :- 0;

Transaction^.copycnt :- i;

Transaction^.nextq :- NIL;

WITH Transaction ^ DO

Identifier :- TargetNode;

TimeOutValue :- TransactionTimeOut;

OutputFrame :- Command;

END;

(* Enter the transaction on the Transaction Queue. *)

QInsert (Transaction, DeleteNodeIORequest ^.Chain ^.TransactionQueue, FALSE) ;

INSERT Transaction LAST IN DeleteNodeIORequest ^ .Chain ^.TransactionQueue;

SpawningNumber := FindNodeNtulber (SpawningNode) ;

(* Convert the spawning node's port status to a Port Enable Register. *)

ConvertPortStatusToEnable (NodeStatus ISpawningN_mber] .PortStatus, PortEnableRegister) ;

(* Generate command for Spawning node to turn on outboard port. *)

Command :- MakeNodeConfiqurationCommand(SpawningNode, PortEnableRegister) ;

dNEW (Transaction, SIZE (Transaction ^ } } ;

Transaction^.refcnt :- 0;

Transaction^.copycnt := i;

Transaction^.nextq := NIL;

WITH Transaction ^ DO

Identifier :- SpawningNode;

TimeOutValue :- TransactionTimeOut;

OutputFrame :- Command;

END;

(* Enter the transaction on the Transaction Queue. *)

QInsert (Transaction, DeleteNodeIORequest ^.Chain ^.TransactionQueue, FALSE) ;

INSERT Transaction LAST IN DeleteNodeIORequest ^ .Chain^.TransactionQueue;

WITH DeleteNodeIORequest^.Chain ^ DO

ChainIdentifier :- AddNodeToNetworkChainIdentifier;

NumberOfTransactions :- QSize (Delet_NodeIORequest^.Chain^.TransactionQueue);

END;

WITH DeleteNodeIORequest ^ DO

Priority :- NetworkManagerPriority;

OnDemand :- FALSE;

B-95

(*

*}

RequestTimeoutValue := ComputeChainTimeout (0, Chain ^. NumberOfTransactions) ;

RequestType := NetworkManagerRequest;

END;

END De let eNodeFromNetwork;

PROCEDURE AddDIUToNetwork(Node : INTEGER;

Port : PortNameType;

NodeStatus : NodeStatusArray;

VAR IORequest : IORequestType);

CONST AddDIUIdentifier = 308;

VAR Transaction

Command

PortEnableRegister

NodeNumber

: TransactionType;

: BusMessageType;

: Por tEnableRegisterType;

: INTEGER;

BEGIN

dNEW(IORequest, SIZE(IORequest^));

IORequestA.refcnt := 0;

IORequest^.copycnt := i;

IORequest^.nextq :- NIL;

dNEW(IORequest^.Chain,SIZE(IORequest^.Chain^));

IORequest^.Chain^.refcnt := 0;

IORequest^.Chain^.copycnt :- i;

IORequest^.Chaln^.nextq :- NIL;

dNEW(Transaction, SIZE (Transaction^}};

Transaction^.refcnt :- 0;

Transaction^.copycnt :- i;

TransactionA.nextq := NIL;

IORequest^.Chain^.TransactionQueue :- InitQ("TransactionQueue", FALSE, 0);

NodeNumber :- FindNodeNumber(Node);

(* Now convert Configuration into a Port Enable Register command. *)

ConvertPortStatusToEnable(NodeStatus[NodeNumber].PortStatus, PortEnableRegister);

(* Generate the command to grow to the Root Node. *)

Command :- MakeNodeConfigurationCommand(Node, PortEnableRegister);

(* Generate the transaction. *)

WITH Transaction ^ DO

Identifier :- Node;

TimeOutValue := TransactionTimeOut;

Output.Frame :- Command;

END;

(* Enter the transaction on the Transaction Queue. *)

QInsert(Transaction, IORequest^.Chain^.TransactionQueue, FALSE);

INSERT Transaction LAST IN IORequest^.Chain^.TransactionQueue;

WITH IORequest^.Chain ^ DO

ChainIdentifier := AddDIUIdentifier;

NumberOfTransactions := QSize(IORequest^.Chain^.TransactionQueue);

END;

WITH lORequest ^ DO

Priority := NetworkManagerPriority;

B-96

(*

*)

OnDemand :- FALSE;

RequestTimeoutValue :- CamputeChainTimeout (0, Chain ^. NumberOfTransactions) ;

Req_estType "- Networ kManage rReque s t;

END;

END AddDIUToNetwork;

PROCEDURE AddGPCToNetwork(Node : INTEGER;

Port : PortNameType;

NodeStatus : NodeStatusArray;

VAR IOR_est : IORequestType);

CONST AddGPCIdentifier - 309;

VAR Transaction

Cowmand

PortEnableRegister

NodeNumber

: TransactionType;

• BusMessageType;

: Por tEnableRegisterType;

: INTEGER;

BEGIN

dNEW(IORequast,SIZE(IORequast^));

IORequest^.refcnt :- 0;

IORequest^.copycnt := I;

IORequest^.nextq := NIL;

dNEW(IORequest^.Chain,SIZE(IORequest^.Chain^));

IORequest^.ChainA.refont :- 0;

IORequest^.Chain^.copycnt :- I;

IORequest^.Chain^.nextq :- NIL;

dNEW(Transaction,SiZE(Transaction^));

Transaction^.refcnt :- 0;

TransactionA.copycnt :- I;

TransactionA.naxtq :- NIL;

IORequest^.Chain^.TransactionQuaue :- InitQ("TransactionQueue", FALSE, 0);

Nod@Number :- FindNodeNumber (Node) ;

(* Now convert Configuration into a Port Enable Register command. *)

ConvertPortStatusToEnable(NodeStatus{NodeNumber].PortStatus, PortEnableReqister);

(* Generate the command to grow to the Root Node. *)

Command :- MakeNodeConfigurationCom_and(Node, PortEnableRegister);

(* Generate the transaction. *)

WITH Transaction ^ DO

Identifier := Node;

TimeOutValue := TransactionTimeOut;

OutputFrame :- Command;

END;

(* Enter the transaction on the Transaction Queue. *)

QInsert(Transaction, IORequest^.Chain^.TransactionQueue, FALSE);

INSERT Transaction LAST IN IORequestA.Chain^.TransactionQueue;

WITH IORequest^.Chain ^ DO

Chainldentifier :- AddGPCIdentifier;

NumberOfTransactions :- QSize(IORequest^.Chain^.TransactionQueue);

END;

WITH IORequest ^ DO

8-97

(*

*)

Priority := NetworkManagerP rior ity;

OnDemand :- FALSE;

RequestTimooutValue := ComputeChainTimeout(0, Chain^.N%_berOfTransactions);

Requ estType :- NetworkManagerReques t;

END;

END AddGPCToNetwork;

PROCEDURE DisabledTransmitTest(TargetNode : INTEGER;

NodeStatus : NodeStatusArray;

VAR IORequest : IORequestType);

CONST DisabledTransmitIdentifier - 250;

VAR Transaction : TransactionType;

Command : BusMessageType;

PortEnableRegister : PortEnableRegisterType;

TargetNumber : INTEGER;

BEGIN

dNEW(IORequest,SIZE(IORequest^));

IORequest^.rofcnt :- 0;

IORequest^.copycnt :- i;

IORequestA.nextq :- NIL;

dNEW(IORequest^.Chain, SIZE(IORequest^.Chain^));

IORequest^.Chain^.refcnt :- 0;

IORequest^.Chain^.copycnt :- i;

IORequest^.ChainA.nextq :- NIL;

dNEW(Transaction, SIZE(Transaction^));

Transaction^.refcnt :- 0;

Transaction^.copycnt :- I;

Transaction^.nextq :- NIL;

IOReq_estA.Chain^.TransactionQueue := InitQ("TransactionQueue", FALSE, 0);

TarqetNumber :- FindNodeNumber(TargetNode};

(* Now convert Configuration into a Port Enable Register command. *}

ConvertPortStatusToEnable(NodeStatus[TargetNumber].PortStatus, PortEnableRegister);

(* Generate the command to disable all ports on target node*)

Command :- MakeNodeConfigurationCommand(TargetNode, PortEnableRegister);

(* Generate the transaction. *}

WITH Transaction ^ DO

Identifier :- TargetNode;

TimeOutValue := TransactionTimeOut;

OutputFrame := Command;

END;

[* Enter the transaction on the Transaction Queue. *)

QInsert(Transaction, IORequest^.Chain^.TransactionQueue, FALSE};

INSERT Transaction LAST IN IORequest^.Chain^.TransactionQueue;

WITH IORequest^.Chain ^ DO

ChainIdentifier := DisabledTransmitIdentifier;

NumberOfTransactions := QSize(IORequest^.Chain^.TransactionQ_eue);

END;

WITH IORequest ^ DO

Priority := NetworkManagerPriority;

B-98

OnDemand :- FALSE;

RequestTimeoutValue "- ComputeChainTimeout (0, Chain ^ .NumberOfTransactions) ;

RequestType :- NetworkManagerReque s t;

END;

END DisabledTransmitTest;

PROCEDURE DisabledRetransmitTest (TestNode : INTEGER;

TargetNode : INTEGER;

NodeStatus : NodeStatusArray;

VAR IORequest : IORequestType);

CONST DisabledRetransmitChainIdentifier - 251;

VAR Transaction : TransactionType;

Command : BusMessageType;

PortEnableRegister : PortEnableRegisterType;

SpawningN%%mber : INTEGER;

TargetNumber : INTEGER;

BEGIN

SpawningNumber :- FindNodeN%_mber(TestNode);

TargetNumber :- FindNodeN%uLber(TargetNode);

dNEW(IORequest,SIZE(IORequest^)};

IORequest^.refcnt :- 0;

IORequest^.copycnt :- I;

IOR_estA.nextq :- NIL;

dNEW(IORequest^.Chain,SIZE(IOReq_est^.Chain^));

IORequest^.Chain^.refcnt :- 0;

IORequest^.Chain^.copycnt :- i;

IOR_est^.Chain^.nextq :- NIL;

IORequest^.Chain^.TransactionQueue :-InitQ("TransactionQueue", FALSE, 0);

(* Convert the spawning node's port status to a Port Enable Register. *)

ConvertPortStatusToEnable(NodeStatus[SpawningNumber].PortStatus, PortEnableRegister);

(* Generate command for Spawning node to turn off the port connected

to the target node. *)

Command :- MakeNodeConfigurationCommand(TestNode, PortEnableRegister);

dNEW(Transaction, SIZE(Transaction^)};

Transaction^.refcnt :- O;

Transaction^.copycnt :- I;

Transaction^.nextq :- NIL;

WITH Transaction ^ DO

Identifier := TestNode;

TimeOutValue :- TransactionTimeOut;

OutputFrame :_ Command;

END;

(*

,)

(* Enter the transaction on the Transaction Queue. *)

QInsert(Transaction, IORequest^.Chain^.TransactionQueue, FALSE);

INSERT Transaction LAST IN IORequest^.Chain^.TransactionQueue;

(* Generate a transaction for target node to return its status. *)

(* Convert the target node's port status to a Port Enable Register. *)

ConvertPortStatusToEnable(NodeStatus[TargetNumber].PortStatus, PortEnableRegister);

(* Generate command for Spawning node to return its status. *)

Command := MakeMonitorCommand(TargetNode);

8-99

(*

*)

dNEW(Transaction, SIZE(Transaction^));

Transaction^.refcnt :- 0;

Transaction^.copycnt :- I;

Transaction^.nextq :- NIL;

WITH Transaction ^ DO

Identifier :- TargetNode;

TimeOutValue :- TransactionTimeOut;

OutputFrame := Command;

END;

(_ Enter the transaction on the Transaction Queue. *)

QInsert(Transaction, IORequestA.Chain^.TransactionQueuQ, FALSE);

INSE_T Transaction LAST IN IORequest^.Chain^.TransactionQueue;

WITH IORequest^.Chain ^ DO

ChainIdentifier := DisabledRetransmitChainIdentifier;

NumberOfTransactions := QSize(IORequest^.ChainA.TransactionQueue);

END;

WITH !ORequest ^ DO

Priority :- NetworkManagerPriority;

OnDemand := FALSE;

KequestTimeoutValue :- ComputeChainTimeout(0, Chain^.NumberOfTransactions);

RequestType :- NetworkManagerReq_est;

END;

END DisabledRetransmitTest;

PROCEDURE ResetConfigurationCommand(TestNode : INTEGER;

NodeStatus : NodeStatusArray;

VAR IORequest : IORequestType);

CONST ResetConfiqurationIdentifier = 252;

VAR Transaction

Command

PortEnableRegister

TestNumber

: TransactionType;

: BusMessageType;

: PortEnableRegisterType;

: INTEGER;

BEGIN

dNEW(IORequest,SIZE(IORequest^));

IORequestA.refcnt :- 0;

IORequest^.copycnt := I;

IORequestA.nextq := NIL;

dNEW(IORequest^.Chain,SIZE(IORequest^.Chain^));

IORequest^.Chain^.refcnt := 0;

IORequest^.ChainA.copycnt := I;

IORequest^.Chain^.nextq := NIL;

dNEW(Transaction, SIZE(Transacticn^));

Transaction^.refcnt :- 0;

Transaction^.copycnt :- I;

Transaction^.nextq := NIL;

IORequest^.Chaln^.TransactionQueue := InitQ("TransactionQueue", FALSE, 0};

TestNumber := FindNodeNumber(TestNode);

{* Now convert Configuration into a Port Enable Register command. *)

ConvertPortStatusToEnable(NodeStatus[TestNumber].PortStatus, PortEnableRegister);

(* Generate the command to grow to the Root Node. *)

B-lO0

(*

*}

Ccamand :- MakeNodeConfigurationCommand(TestNode, PortEnableRegister);

(* Generate the transaction. *}

WITH Transaction* DO

Identifier :- TestNode;

TimeOutValue :- TransactionTimeOut;

OutputFrame :- Coumand;

END;

(* Enter the transaction on the Transaction Queue. *)

QInsert(Transaction, ZORequest^.Chain^.TransactlonQueue, FALSE);

INSERT Transaction LAST IN IORoq_est^.Chain^.TransactionQueue;

WITH IORaquest^.Chain ^ DO

ChainIdentifier :- RssetConfig,/rationIdentifier;

N_mberOfTransactions :- QSize(IORequest^.ChainA.TransactionQueue};

END;

WITH IORoquest ^ DO

Priority :- NetworkManagerPriority;

OnDemand :- FALSE;

RequestTimeoutValue :- C_m_uteChainTimeout(0, Chain^.NumberOfTransactions};

RequostType :- NetworkManagerRequest;

END;

END ResetConfigurationCommand;

PROCEDURE MakeMonitorRequest _odeConnection : NodeArrayType} : IORequestType;

CONST TalkerOutOfTurnIdentifier - 253;

VAR MonitorRequest : IORequestType;

Transaction : TransactionType;

Cc_and : BusMessagQType;

NodeIndex : INTEGER;

BEGIN

dNEW(MonitorRequest, SIZE(MonitorRequest^));

MonitorRequest^.refcnt := 0;

MonitorRequest^.copycnt :- i;

MonitorRequest^.nextq :- NIL;

dNEW(MonitorRequest^.Chain, SIZE(MonitorRequest^.Chain^));

MonitorRequest^.Chain^.refcnt :- 0;

MonitorRequestA.Chain^.copycnt :- i;

MonitorRequest^.Chain^.nextq :- NIL;

MonitorRequest^.Chain^.TransactionQueue :- InitQ("TransactionQueue", FALSE, 0);

FOR NodeIndex := 1 TO NumberOfNodes DO

WITH NodeConnectionINodeIndex] DO

(* A node addresses are initialize to their index in the

array, if the address is not the index then a node

must be present in this index. *)

IF NodeAddress <> Nodelndex THEN

Command :- MakeMonitorCommand (NodeAddress) ;

dNEW(Transaction,SIZE(Transaction^));

Transaction^.refcnt :- 0;

Transaction^.copycnt :- I;

B-I01

Transaction^.nextq :- NIL;
WITH Transaction ^ DO

Identifier :- NodeAddress;

T_eOutValue :- TransactionTimeOut;

OutputFrame := Command;

END;

QInsert (Transaction, MonitorRequest ^.Chain ^.TransactionQueue, FALSE) ;

END;

END;

END;

WITH MonitorRequest ^.Chain ^ DO

Chainldentifier :- TalkerOutOfTurn Identifier;

NumberOfTransactions := QSize(MonitorRequest^.Chain^.TransactionQueue)

END;

WITH MonitorRequest ^ DO

Priority :- NetworkManagerPrior ity;

RequestT/meoutValue :m ComputeChainTimeout {0, Chain ^ .NumberOfTransactions) ;
OnDemand " := FALSE;

Request Type :- NetworkMa_ agerReques t;

END

RETURN (MonitorRequest) ;

END MakeMonitorRequest;

**

END GrowNet.

B-102

REPAIR

B-103

DEFINITION MODULE Repair;

FROM IOService IMPORT IORequestType;

FROM IOS IMPORT ChainStatusData;

FROM TypeConst IMPORT NodeArrayType, NodeStatusArray, ChannelIDType;

FROM BusMassag IMPORT PortNameType, NumberOfNodes;

EXPORT QUALIFIED NodeSetRange, NodeSet, AnalysisStatusType, FaultType,

FaultAnalysisRecordType, ErrorRecordType, BranchArrayType,

ReconnectRoot, BranchReconnect, TalkToRootOfTree,

ErrorAnalysis ;

TYPE NodeSetRange - [i .. NumberOfNodes] ;

NodeSet - SET OF NodeSetRange;

BranchArrayType- ARRAY [i .. 3] OF NodeSet;

AnalysisStatusType - (AnalysisSucessful, AnalysisUnsucessful) ;

FaultType- (RootLinkFailure, LinkFailure);

FaultAnalysisRecordType - RECORD

CASE Fault : FaultType OF

Roo tLinkFailure :

FailedChannel : ChannelIDType;

I LinkFailure :

FailedRoot • INTEGER;

FailedInboardPort : PortNameType;

: NodeSet;

: INTEGER;

FailedNodeSet

FailedNodeCount

END;

END;

ErrorRecordType = RECORD

CASE Status : AnalysisStatusType OF

AnalysisSucessful :

FaultAnalysisRecord : FaultAnalysisRecordType;

I AnalysisUnsucessful :

END;

END;

PROCEDURE RaconnectRoot(NodeConnections : NodeArrayType;

VAR NetworkStatus : NodeStatusArray;

TargetNode : INTEGER;

FailedNodeSet : NodeSet;

VAR ReconnectIOReqeust : IOReq_estType;

VAR PortCount : INTEGER)

:BOOLEAN;

PROCEDURE BranchReconnect(ErrorReport

NodeConnections

VAR ReconnectNode

: ErrorRecordType;

: NodeArrayType;

: INTEGER;

B-104

VAR ReconnectPort : PortNameType;

VAR NodeStatus : NodeStatusArray;

VAR Branches : BranchArrayType;

VAR BranchReconnect1ORequest : IORequestType;

VAR PortCount : INTEGER) ;

**

PROCEDURE ErrorAnalysis (MonitorResponse : ChainStatusData;

HetworkConfiguration : NodeStatusArray;
NodeConnect ions : NodeArrayType;

VAR ErrorReport : ErrorRecordType;
VAR PortCount : INTEGER) ;

**

PROCEDURE TalkToRootOfTree (Root : INTEGER;

VAR TalkIORequest : IORequestType);

**

END Repair.

B-105

REPAIR

B-106

IMPLEMENTATION MODULE Repair;

FROM TypeConst IMPORT NodeArrayType, NodeStatusArray, PortStatusArray,

StatusType, PortConfig_rationType, NetworkElementType,

Channe I IDType;

FROM BusMea_aq IMPORT PortNameType, BusMen_ageType,

PortEnableRegisterType, NumberOfPortsPerNode, NumberOfNodes,

MakeNodeCon figur ationCommand, MakeMonitorCommand;

FROM IOServlce _IMPC_LT IORequestType, RequestActivityType;

FRC_4 IOS I_ORT ChainType, TransactionType, ChainStatusData,

InputFrameType, InputFrameQueuaType, TimeOutlncLicatorType;

FROM CentralDB I_ORT FindNodeNumber;

FROM GrowNet IMPORT TransactionTimeOut, NetworkManagerPriorlty;

FROM Utilities IMPORT ConvertPortStatusToEnable, ComputeChainTimeout;

FR_4 QueueM I_ORT QInsert, InitO, FirstQ, QSucc, QSiza, dNEW;

FROM Storage IMPORT ALLOCATE;

FROM SYST_4 IMPOR_ SIZE;

FROM InOut I_ORT WriteString, WriteLn;

CONST ReconnectChainIdentifier - 221;

TalkChainIdentifier - 222 ;

**

PROCEDURE GetNodeResponse (Responses : ZnputFrameQueueType;

Node : INTEGER;

VAR NodeResponse : InputFrameType) ;

VAR InputFrame : InputFrameType;

BEGIN

NodeResponse :- NIL;

InputFrame :- FirstQ(Responses) ;

LOOP

IF FindNodeNumber (InputFrame ^ .MessageAddress) = Node THEN

NodeResponse :- InputFrame;

EXIT;

END;

InputFrame :-QSucc(InputFrame, Responses};

IF InputFrame s NIL THEN

EXIT;

END;

END;

END GetNodeResponse;

**

(* This procedure searchs the network status for an idle port on this
node that is connected to another node.

If so, the port and a true value will be returned, otherwise false

will he returned. *}

B-107

PROCEDURE IdlePortOnNode (Test.Node : INTEGER;

NetworkStatus : NodeStatuaArray;

NetworkConnections : NodeArrayType;

VAR IdlePort : PortNameType;

VAR Count : INTEGER) :BOOLEAN;

VAR IdlePortFound : BOOLEAN;

TestNumber : INTEGER;

BEGIN

TestNumber :- FindNodeNumber (TestNode) ;

LOOP

INC(Count);

IF (NetworkStatus[TestNumber].PortStatus[IdlePort].Status - Idle)

AND (NetworkConnections[TestNumber].PortArray[IdlePort].

AdjacentElement - Node} THEN

IdlePortFound :- TRUE;

EXIT;

ELSIF (IdlePort - NumberOfPortsPerNode) THEN

IdlePortFound :- FALSE;

EXIT;

ELSE

IdlePort := IdlePort + i;

END;

END;

RETURN (IdlePortFound) ;

END IdlePortOnNode;

**

(* This procedure checks the Spawning node to see if it is present in

the failed node set. If it ks not, the true will be returned with

the spawning port, otherwise false will be returned. *)

PROCEDURE ValidSpawningNode(SpawningNode : INTEGER;

Target-Node : INTEGER;

NetworkStatus : NodeStatusArray;

NetworkConnections : NodeArrayType;

FailedNodeSet : NodeSet;

VAR SpawningPort : PortNameType;

VAR Count : INTEGER) :BOOLEAN;

VAR ValidSpawningNodeFound : BOOLEAN;

SpawningNumber : INTEGER;

BEGIN

SpawningNumber :- Finc_odeNumber(SpawningNode);

(* Check to see if spawning node is in failed node list. *)

IF NodeSetRange(SpawningNumber) IN FailedNodeSet THEN

(* Spawning Node was in failed node set.

has NOT been found. *)

ValidSpawningNodeFound :- FALSE;

A valid spawning node

ELSE

(* Determine outboard pozt of spawning node *)

SpawningPort :- I;

LOOP

8-108

INC (Count) ;

IF SpawningPort -NumberOfPortsPerNode THEN

ValidSpawnlngNodeFound :- FALSE;

EXIT;

ELSIF NetworkStatus ISpawninqNumber] .PortStatus [SpawnlngPort].

Status <> Idle THEN

SpawningPort :- SpawningPort + i;

ELSIF (NetworkStatus ISpawningl_er] .PortStatus

[SpawningPort] .Status - Idle) AND

_etworkConnections [SpawningNumber] .PortArray

[SpawningPort] .NodaAddress <> TargetNode) THEN

SpawninqPort :- SpawningPort + 1;

ELSE

ValidSpawningNodeFound :- TRUE;

EXIT;

END;

END;

END;

RETURN (ValidSpawningNodoFound) ;

END ValidSpawningNode;

**

(* This procedure formats an I/O chain for the Network manager to

reconnect a spawing node to a target node. *)

PROCEDURE MakeReconnectChain_pawningNode : INTEGER;

SpawningPort : PortNameType;

TargetNode : INTEGER;

TargetPort : PortNameType;

NetworkStatus : NodeStatusArray;

VAR ReconnectRequest : IOReq_estType};

VAR SpawningNumber : INTEGER;

TargetNumber : INTEGER;

Transaction : TransactionType;

Command : BusMessageType;

PortEnableRegister : PortEnableRegisterType;

BEGIN

SpawningNumber :- FindNodeNumber(SpawningNode);

TargetNumber :- FzndNodeNumber(TarqetNode);

dNEW(ReconnectRequest,SIZE(ReconnectRequest^});

ReconnactRequest^.refcnt :- 0;

ReconnectRequest^.copycnt :- i;

ReconnectRequest^.nextq :- NIL;

dNEW(ReconnectRequest^.Chain,SIZE(ReconnectRequestA.Chain^));

ReconnectRequest^.Chain^.refcnt :- 0;

ReconnectRequest^.Chain^.copycnt :- I;

ReconnectRequest^.Chain^.nextq :- NIL;

ReconnactRequest^.Chain^.TransactionQueue :- InitQ("TransactionQueue", FALSE, 0);

(* Convert the spawning node's port status to a Port Enable Register. *)

ConvertPortStatusToEnable(NetworkStatus[SpawningNumber].PortStatus,

PortEnableRegister);

(* Generate command for Spawning node to turn on outboard port. *)

Command :- MakeNodeConfigurationCommand(SpawningNode, PortEnableRegister);

B-109

(*

')

(*

*)

dNEW (Transaction, SIZE (Transaction ^)) ;

Transaction^.refcnt := 0;

TransactionA.copycnt := I;

Transaction ^.nextq :- NIL;

WITH Transaction ^ DO

Identifier : - SpawningNode;

TimeOutValue :- TransactionTimeOut;

O_tputFrame : - Command;

END;

(* Enter the transaction on the Transaction Queue. *)

QInsert(Transaction, ReconnectRequest^.Chain^.TransactionQueue, FALSE);

INSERT Transaction LAST IN ReconnectRequeetA.Chain^.TransactionQueue;

(* Generate a transaction for target node to turn on its inboard port.*)

(* Convert the target node's port status to a Port Enable Register. *)

ConvertgortStatusToEnable (NetworkStatus [TargetNumher] .PortStatus,

Por tEnableRegister) ;

(* Generate command for Spawning node to turn on outboard port. *}

Command :- MakeNodeConfigurationCommand(TargetNode, PortEnableRegister) ;

dNEW (Transaction, SIZE (Transaction ^)) ;

Transaction^.refont :- 0;

Transaction^.copycnt :- I;

Transaction^.nextq "- NIL;

WITH Transaction ^ DO

Identifier :- TargetNode;

TimeOutValue :- TransactionTimeOut;

OutputFrame :- Command;

END;

(* Enter the transaction on the Transaction Q_eue. *)

QInsert(Transaction, ReconnectRequeet^.Chain^.TransactionQueue, FALSE);

INSERT Transaction LAST IN ReconnectReqeust ^ ,Chain ^ .TransactionQueue;

WITH KeconnectReq_est ^ .Chain ^ DO

ChainIdent ifier :- ReconnectChain Ident ifier;

NumberOfTransactions := QSize (ReconnectRequest ^ .Chain ^,TransactionQueue} ;

END;

WITH ReconnectRequest ^ DO

Priority :- Networ kManage rPr iority;

OnDemand :_ FALSE;

Req_estTimeoutValue :- ComputeChainTimeout (0, Chain ^ .NumberOfTransactions) ;

KequestType := Networ kMa_agerReques t;

END;

END MakeReconnectChain ;

**

PROCEDURE FindBranches (FailedNodeSet : NodeSet;

FailedRoot : INTEGER;

NodeConnect ions : NodeArrayType;

Node Status : NodeStatusArray;

VAR BranchesFromRoot : BranchArrayType} ;

VAR NodeIndex : INTEGER;

Portlndex : PortNameType ;

B-110

BranchIndex : INTEGER;

FailedRootNumber : INTEGER;

FailedSet : NodeSet;

**

PROCEDURE TraverseBranch (VAR BranchSet : NodeSet;

PAR FailedSet : NodeSet;

FailedRoot : INTEGER;

NodeConnections : NodeArrayType;

NodeStatus : NodeStatusArray) ;

PAR PortIndex : PortNameType;

FailedRootNumber : INTEGER;

BEGIN

FailedRootNumber :- FindNodeNumber (FailedRoot) ;

FOR PortIndex :- 1 TO NumberOfPortsPerNode DO

(*Determine the Number of Branches, Find the Root of each

branch and put in Branch from Root Array. *)

WITH NodeConnactions [FailedRoot.N%%mber]. PortArray [PortIndex] DO

IF (NodeStatus [FailedRootN_mber] .PortStatus [PortIndex] .Status

- Active) AND (AdJacentElement - Node) AND

(NodeSetRange (NodeNumber) IN FailedSet) THEN

(* A root of a branch has been found. *)

INCL (BranchSet, NodeSetRange (NodeNumber)) ;

EXCL (FailedSat, NodeSetRange (NodeNumber)) ;

TraverseBranch (BranchSet, FailedSet, NodeAddress,

NodeConnections, NodeStatus) ;

END;

END;

END;

END TraverseBranch;

**

BEGIN

(* Copy Failed Node Set in Failed Set for local manlpulation. *)

FailedSet :-NodeSet { };

FailedSet :- FailedSet + FailedNodeSet;

FailedRootNumber :- FindNodeNumbar (FailedRoot) ;

(* Remove Failed Root from failed set. The failed root

is from where the branches start, so it should not be

in the failed node set. *)

EXCL (FailedSet, NodeSetRange (FailedRootNumber)) ;

(* Initialize Branches from Root Of Failed Tree to Nil. *)

FOR BranchIndex := i TO 3 DO

BranchesFromRoot [BranchIndex] :- NodeSet (} ;

END;

Branchlndex :- i;

(*Determine the Number of Branches. Find the Root of each

branch and put in Branch from Root Array. *)

FOR PortIndex := 1 TO NumberOfPortsPerNode DO

8-111

(*

*}

WITR NodeConnections [FailedRootNumber] .PortArrayIPortIndex] DO

IF (NodeStatus [FailedRootNumber]. PortStatus [PortIndex]. Status

-Active) AND (Ad]acentE_ement- Mode} AND

(NodeSetRanqe (NodeNumbar) IN FailedNodeSat) THEN

(* A root of a branch has been found. *)

INCL (BranchesFromRoot [BranchIndex], NodeSetRange (NodeNumher)) ;

EXCL (FailedSet, NodaSetR_lnge(NodaNumber)) ;

TraverseBranch (BranchesFromRoot [BranchIndex], FailedSet,

NodeAddress, NodeConnections, NodeStatus} ;

Branchlndex := Branchlndex + i;

END;

END;

END;

END FindBranches;

**

PROCEDURE ErrorAnalysis (MonitorResponse : ChainStatusData;

NetworkConfiguration : NodeStatusArray;

NodeConnections : NodeArrayType;

VAR ErrorReport : ErrorRecordType;

VAR PortCount : INTEGER) ;

VAR NodeResponse : InputFrameType;

FailedRootNumber : INTEGER;

Node Index : INTEGER;

Port Index : PortNameType;

BEGIN

PortCount :- 0;

ErrorReport.Status := AnalysisSucessful;

IF MonitorResponse ^.AllFailed THEN

WITH ErrorReport.FaultAnalysisRecord DO

Fault := RootLinkFailure;

FailedChannel :- C;

END;

ELSE

WITH ErrorReport.FaultAnalysisRecord DO

Fault := LinkFailure;

FailedNodeCount := 0;

FailedNodeSet := NodeSet { } ;

END;

FOP.EACH NodeResponse IN MonitorResponse ^ .InputFrameQ_eue DO

NodeResponse := FirstQ (MonitorResponse ^ . InputFrameQ_eue) ;

LOOP

IF NodeResponse _ .TransactionTimeOutlndicator = TimedOut THEN

WITH ErrorReport.FaultAnalysisRecord DO

FailedNodeCount :-FailedNodeCount + i;

I_CL (FailedNodeSet, FindNodeNumber

B-112

(NodeResponse ^ .MessageAddress)) ;

_4D;

END;

NodeResponse :- QSucc (NodeResponse,

MonitorResponae ^.Inpu tFrameQueue) ;

IF NodeResponsa - NIL THEN

EXIT;

_D;

END;

(* Find the inboard port of the failed tree. *}

NITH ErrorReport.FaultAnalysisRecord DO

IF FailedNodeSet - NodeSat {} THEN

(* Must have. bean a DIU link failura. Set analysis to

unsuccesaful. *)

ErrorReport. Status :- AnalysisUnsucassful;

ELSIF RootOfFailedTree(FailedNodeSet, NetworkConfig_ration,

NodeConnections, MonitorResponse, FailedRoot, PortCount) THEN

FailedRootNumber :- FindNodeNumber (FailedRoot) ;

Portlndex :- I;

W_ILE (NatworkConfig_ration[FailedRootNumber] .PortStatus

[PortIndex] .Status <> Active} OR

{NetworkConfiguration [FalledP_tNumber] .PortStatus

[PortTndex] .Direction <> Inboard) OR

(NodaConnections [FailedRootNumber] .PortArray [PortIndex].

AdjacentElement O Node) DO

INC IPortCount) ;

PortIndex :- Portlndax + i;

END;

FailedInboardPort :- PortIndex;

ELSE

WriteString("Unable to find root of failed tree."};

WriteLn ();

END;

END;

END;

END ErrorAnalysis;

**

PROCEDURE RootOfFailedTree (FailedSet : NodeSet;

NetworkConfiguration • NodeStatusArray;

NetworkConnections : NodeArr ayType;

MonitorResponse$: ChainStatusData;

VAR Root : INTEGER;

VAR Count : INTEGER)

:BOOLEAN;

VAR FoundRoot : BOOLEAN;

FailedNodes : NodeSet;

RootNumber : INTEGER;

B-113

BEGIN

AdjacentNode : INTEGER;

SetIndex : NodeSetRange;

Portlndex : PortNameType;

Inboard_or t : PortNameType;

AdjacentNodeResponse : InputFrameType;

YoundRoot :- FALSE;

Fauile4Nodes :- FailedSet;

FOR SetIndex :- 1 TO NumberOfNodes DO

IF Setlndex IN FailedNodes THEN

EXCL (FailedNodes, Setlndex) ;

(* Find the inboard port of this node.

PortIndax :m i;

,)

LOOP

INC (Count) ;

WITH NetworkConfiqurationISetlndex] .PortStatus [Portlndex] DO

IF (Status- Active) AND (Direction- Inboard) AND

(NetworkConnections [SetIndex] .PortArray [PortIndex] .

Adjacent.Element - Node) THEN

InboaxdPort :- Portlndex;

EXIT;

ELSE

(* No check is make for last port on node because

we expect to find an inboard port. *)

Portlndex :- PortIndex + I;

END;

END;

END;

CASE NetworkConnections[Setlndex].PortArray[InboardPort].

AdjacentElement OF

Node:

AdjacentNode :- NetworkConnections[SetIndex].

PortArrayIInboardPort].NodeNumber;

GetNodeResponse(MonitorResponses^.InputFrameQueue,

AdjacentNode, AdjacentNodeResponse);

(* This loop will need to modified to support

a failed node set that does not have a

root. *)

IF AdjacentNodeResponse^.TransactionTimeOutIndicator

- NormalCompletion THEN

FoundRoot :- TRUE;

Root :- NetworkConnections[SetIndex].NodeAddress;

END;

END;

END;

END;

RETURN (FoundRoot) ;

B-114

END R_tO_aile_r_;

PROCEDURE ReconnectRoot (NodeConnections : NodeArrayType;

VAR NetworkStatus : NodeStatusArray;

TargetNode : INTEGER;

FailedNodeSet : NodeSet;

VAR ReconnectIORequest : IORequsstType;

VAR PortCount : INTEGER)

:BOOLEAN;

VAR ReconnectSucoessful : BOOLEAN;

SpawningNodo : INTEGER;

SpawningNumber : INTEGER;

SpawningPort : PortNameType;

TargetPort : PortNameType;

TargetNumbor : INTEGER;

BEGIN

PortCount :- 0;

Target-Number :- FindNodQNumber(TargetNode);

ReconnectSuccessful :- FALSE;

(* Set Target Port to start searching with port I.

TargetPort :- i;

LOOP

,)

INC(PortCo_nt);

IF IdlePortOnNode(TargetNode, NetworkStatus, NodeConnections,

TargetPort, PortCount) THEN

(* A potential spawing node has been identified. *)

SpawningNode :- NodeConnections[TargetN_mber).PortArray

[TargetPort] .NodeAddress;

SpawningNumber :- FindNodeNumber(SpawningNode);

(* Check for a valid spawning node. *)

IF ValidSpawningNode (SpawningNode, TargetNode, NetworkStatus,

NodeConnections, FailedNodeSet, SpawningPort, PortCount) THEN

(* Upadate status of the new lank used to reconnect

nodes. *)

WITH NetworkStatus(SpawningNumber].PortStatus [SpawningPort] DO

Status := Active;

Direction :- Outboard;

END;

WITH NetworkStatus[TargetNumber].PortStatus(TargetPort] DO

Status :- Active;

Direction :- Inboard;

END;

(* Make chain to reconnect spawning node to target node. *)

MakeReconnectChain(SpawningNode, SpawningPort, TargetNode,

TargetPort, NetworkStatus, ReconnectIORequest);

ReconnectSuccessful :- TRUE;

EXIT;

END;

ELSIF TargetPort < NumberOfPortsPerNode THEN

TargetPort := TargetPort + I;

ELSE

B-115

ReconnectSuccessful :- FALSE;

EXIT;

END;

END;

RETURN (ReconnectSu cces s ful) ;

END ReconnectRoot;

**

PROCEDURE BranchReconnect (ErrorReport : ErrorRecordType;

NodeConnections : NodeArrayType;

VAR ReconnectNode : INTEGER;

VAR ReconnectPort : PortNameType;

VAR NodeStatus : NodeStatusArray;

VAR Branches : BranchArrayType;

VAR BranchReconnectlORequest : IORequQstType;

VAR PortCount : INTEGER) ;

VAR BranchNode : NodeSetRange;

Bran chNumber : INTEGER;

SpawningNode : INTEGER;

SpawningPort : PortNameType;
FailedRootNumber : INTEGER;

SpawningN%u_ber : INTEGER;
ReconnectNumber : INTEGER;

**
(* This function will return a node from the branch. If assumes

that a branch with no nodes will be passed to it. *)

PROCEDURE GetNodeFromBranch(VAR Branch : NodeSet) :NodeSetRange;

VAR Node : NodeSetRange;

BEGIN

Node:- i;

LOOP

IF Node IN Branch THEN

EXCL(Branch, Node) ;

EXIT;

ELSE

Node :- Node + I;

END;

END;

RETURN (Node) ;

END GetNodeFromBranch;

**

BEGIN

WITH ErrorReport.FaultAnalysisRecord DO

FindBranches (FailedNodeSet, FailedRoot, NodeConnections,

NodeStatus, Branches) ;

FailedRootNumber := FindNodeNumber (FailedRoot) ;

B-116

END;

BranchNumber :- I;

LOOP

(* Check current branch to see if it has any nodes left to check. *)

IF Branches[BranchNumber] <> NodeSet { } THEN

(* Get a node from the branch. *}

BranchNode :- GetNodeFromBranch (Branches [BranchNumber]);

Recon,ectNode :- NodeConnections [BranchNode] .NodeAddress;

ReconnectNumber :- FindNodeN%_ber (ReconnectNode) ;

(* Check this node to see if it contains any idle ports

which are not connected to the failed node set. *)

Reconnect.Port :- i;

IF IdlePortOnNode (ReconnectNode, NodeStatus, NodeConnections,

Reconnect.Port, PortCount) THEN

(* A potential spawing noda has been identified. *)

SpawningNode :- NodeConnections [BranchNode] .PortArray

[ReconnectPort] .NodeAddress ;

SpawninqNumber :- Fin_NodeNumber (SpawninqNode) ;

(* Check for a valid spawning node. *)

WITH ErrorReport.FaultAnalysisRecord DO

IF ValidSpawningNode (SpawningNode, ReconnectNode,

NodeStatus, NodoConnections, FailedNodeSet,

SpawningPort, PortCount} THEN

(* Upadate status of the new link used to reconnect

nodes. *)

WITH NodeStatus[SpawningNumber].PortStatus[

SpawningPort] DO

Status :- Active;

Direction :- Outboard;

END;

WITH NodeStatus[ReconnectNumber].PortStatus[

ReconnectPort] DO

Status :- Active;

Direction :- Inboard;

END;

(* Make chain to reconnect spawning node to target

node. *)
MakeReconnectChain(SpawningNode, SpawningPort,

ReconnectNode, ReconnectPort, NodeStatus,

BranchReconnectIORequest);

(* A Node on a branch has been identified for

attempted reconnection to the network. *)

EXIT;

END;

_D;

ELSE

(* LOOp again and check for next node in branch. *)

END;

B-117

ELSE

BranchNumber :-BranchNumber + I;

END;

END;

END BranchReconnect;

**

PROCEDURE TalkToRootOfTree (Root : INTEGER;

VAR TalkIORequest : IORequestType);

VAR Transaction : TransactionType;

Command : BusMessageType;

BEGIN

dNEW (TalkIORequest, SIZE (TalkIORequest ^)) ;

TalkIORequest^.refcnt :- 0;

TalkIORequest_.¢opycnt :- I;

TalkIORoquest^.nextq :- NIL;

dNEW (TalkIORequest ^.Cha/n, SIZE (TalkIORequest ^.Chain ^));

TalkIORequest^.Chain^.refcnt :- 0;

TalkIORequest ^ .Chain ^ .copycnt :- I;

TalkIORequest^.Chain^.nextq :- NIL;

TalklORequest ^ .Chain ^ .TransactionQueue :- InitQ ("TraasactionQuaue", FALSE, 0) ;

Command :- MakeMonitorCom_and(Root) ;

dNEW (Transaction, SIZE (Transaction ^));

Transaction^.refcnt :- 0;

Transaction^.copycnt :- I;

Transaction^.nextq :- NIL;
WITH Transaction ^ DO

Identifier :- Boot;

TimeOutValue :- TransactionT/meOut;

OutputFrame :- Command;

END;

(* Enter the transaction on the Transaction Queue. *)

QInsert (Transaction, TalkIORequest ^.Chain^.TransactionQueue, FALSE) ;

(*
INSERT Transaction LAST IN TalkIORequest^.ChainA.TransactionQueue;

*)
WITH TalkIORequest^.Chain ^ DO

ChainIdentifier :- TalkChainIdentifier;

NumberOfTransactions := QSize (TalklORequost ^ .Chain ^ .TransactionQueue) ;

END;

WITH TalkIORequest ^ DO

Priority :- NetworkManagerPrior i ty;

OnDemand := FALSE;

RequestTimeoutValue := ComputeChainT/meout(0, Chain^.NumberOfTransactions);

Request Type := Net workManagerReques t;

END;

END TalkToRootO fTree;

**

END Repair.

B-118

NETMANGER

B-119

DEFINITION DEVM NetManger;

EX_ORT SpawningNodeType*, SpawningQueueType;

TYPE SpawningNodeType - ENTITY

Node : INTEGER;

END;

SpawningQueueTyp@ - QUEUE OF SpawningNodeType;

END Net24anger.

B-120

NETMANGER

B-121

DEVM NenManger;

FRCM IOService REACH IORequestType*,

IOResponseType*,

NetworkManagerServiceRequest*,

NewNetworkStateType*;

FRC_4 IOS REACH ChainStatusData*, ChainType*,

InputFrameType*, TransactionType*;

FRCMProcessor REACH ProcessinqUnit*;

FRCM BusMessaq REACH BusMeesageType*;

FROM IOService IMPORT NetworkManagerActivityType, NetworkHealthType,

ChainExecutedWithoutError, ReleaseChainResponseMemory;

FROM 10S IMPORT TimoOutIndicatorType;

FROM CentralDB IMPORT ReadNodelnterConnections, FindNodeNumber;

FROM TypeConst IMPORT NodeArrayType, NodeStatueArray, ChannelStatusRecord,

NetworkElementType, PortStatusArray, StatusType,

PortConfigurationType;

FROM BusMessag IMPORT PortNameType, NumberOfPortsPerNode,

NumberOfNodes, MakeMonitorCcmmand;

FROM Utilities IMPORT InitializeStatusVariables, NodesInThisSimulation,

UpdateLinkStatus, SetNodeStatusFailed;

FROM GrowNet IMPORT GROWTOROOTNODE, EnableLink, DeleteNodeFromNetwork,

AddDIUToNetwork, AddGPCToNetwork, DisabledTransmitTest,

DisabledRetransmitTest, ResetConfiqurationCommand,

MakeMonitorReq_est;

FROM Repair I_ORT NodeSetRange, NodeSet, FaultType,

FaultAnalysisRecordType, ErrorRecordType, BranchArrayType,

ErrorAnalysis, AnalysisStatusType, ReconnectRoot,

BranchReconnect, TalkToRootOfTree;

FROM Senddata IMPORT DataElementType, FrequencyType, NonCyclicDataType,

NonCyclicVariationType, WriteDataElementType;

INPUTS

EVENT ServiceRequest : NetworkManagerServiceRequest;

IONetworkResponse : ChainStatusData;

ProcessorResponse : ProcessingUnit;

MissedDeadLine : INTEGER; (* ignored, since turned off for the IOP *)

Reset : BOOLEAN;

PARA NetworkIDToManage : INTEGER;

ProcessingPriority : INTEGER;

IOPIdentifier : INTEGER;

InitialNodeConficuration : ARRAY [I .. NumberOfNodes], [i .. NumberOfPortsPerNode] OF BOOLEAN;

InitialOrientation : ARRAY [I .. NumberOfNodes], [i .. NumberOfPortsPerNode] OF BOOLEAN;

END;

OUTPUTS

VAR IONetworkRequest

NewNetworkState

ProcessorRequest

IORequestType;

NewNetworkStateType;

ProcessingUnit;

END;

TYPE Network/4anagerJobType - (GROWNetwork, KepairNetwork);

GrowNetworkModeType = (GrowToRootNode, AddRemainingNodes, AddDIUS,

AddGPCS, DiagnosticCheck);

RepairNetworkModeType = (DisconnectLink, RepairLink, ReconnectLink,

ReconnectBranch, TalkToRootFailedTree);

DiagnosticModeType = (LinkEnable, DisabledTrans_it, DisabledRetransmit,

B-122

ResetConfig_ration, TalkerOutOfTurn,

DiagnosticsComplete) ;

DIUSpawningRecord - ENTITY

Spaw_ingNode : INTEGER;

OutboardPort : PortNameType;

END;

GPCSpawningRecord - ENTITY

SpawningNode : INTEGER;

InboardPort : PortNameType;

END;

DIUListQ_eueType - QUEUE OF DIUSpawningRecord;

GPCListQueueType - QUEUE OF GPCSpawningRecord;

DiagnosticRecordType - RECORD

Diagnostic : DiagnosticModaType;

Tes_ode : INTEGER;

TestPort : PortNameType;

TargetNode : INTEGER;

TargetPort : PortNameType;

LinkEnableSucessful : BOOLEAN;

PortDiagnosticsRun : BOOLEAN;

TalkerRequest : iORequestType;

END;

NetworkGrowthProgressType - RECORD

CASE Mode : GrowNetworkModeType OF

GrowToRootNode :

Root_NodeAddress : INTEGER;

InboardPort : PortNameType;

AddRemainingNodes :

SpawningNode : INTEGER;

SpawningPort : PortNameType;

TargetNode : INTEGER;

TargetPort : PortNameType;

AddD IUS :

DIUAddress : INTEGER;

AddGPCS:

SpareRootNode_dress : INTEGER;

DiagnosticCheck :

END;

END;

ProcessingType = (Powerup, GrowRequest, NetworkRequest,

NewState, FaultAnalysis) ;

ProcessType - RECORD

CASE Message : ProcessingType OF

Powerup:

B-123

I GrowRequest, NetworkRequest, FaultAnalysis :

IORequest : IORequestType;

] NewState :

StateData : NewNetworkStateType;

END;

END;

DataPointer - POINTER TO ProcessType;

CONST NQtworkManagerPriority = I;

NodePowerupInitilizeTime - 0.000025;

GrowInitializeNodeTime - 0.000025;

N_tworkResponseComputation - 0.000050;

ComputeOneTransactionChain = 0.000075;

ComputeTwoTransactionChain - 0.000150;

ChangeNetworkStatus = 0.000025;

F±xedErrorReportAnalysis = 0.000075;

PortErrorAnalysis = 0.000005;

VAR NetworkState

RequestForService

NodeConnections

NodeStatus

ChannelStatus

Spawn ingQueue

DIUList

GPCList

NetworkManagerStatus

NetworkGrowthProgress

DiagnosticStatus

: NewNetworkStateType;

: NetworkManagerServiceRequest;

: RodeArrayTypa;

: NodeStatusArray;

: ChannelStatusRecord;

: SpawningQueuQType;

: DIUListQ_eueType;

: GPCListQueueType;

: NetworkManagerJobType;

: NetworkGrowthProgressType;

: DiagnosticRecordType;

NodeslnNetwork

NumberOfActiveNodes

: INTEGER;-

: INTEGER;

NetworkResponse

RepairNetworkMode

ErrorKeport

BranchNode

BranchPort

BranchesOfRoot

ReconfigurationStrateqy

AnalysisPortDecisions

DataCollectionRecord

NodeIndex

PortIndex

ErrorIndex

Transaction

SourceNode

TargetNode

: ChainStatusData;

: RepairNetworkModeType;

: ErrorRecordType;

: INTEGER;

: Por tNameType;

: BranchArrayType;

: RepairNetwor kModeType;

: INTEGER;

: DataElementType;

: INTEGER;

:Por tNameType;

: INTEGER;

: TransactionType;

: INTEGER;

: INTEGER;

PreviousChainFailed

GoodRootNodeFound

• BOOLEAN;

: BOOLEAN;

PowerupRequest

NetworkResponseRequest

ProcessResponse

PowerupProcessing

NetworkResponseProcessing

ProcessingResponse

LastNetworkRequest

: DataPointer;

: DataPointer;

: DataPointer;

: ProcessingUnit;

: ProcessingUnit;

: ProcessisgUnit;

: IORequestType;

RootNode

FailedNode

CurrentPort

: INTEGER;

: INTEGER;

: PortNauneType;

IOPPort : INTEGER;

8-124

(**)

(* This procedure uses a Node Status Array and a Network Connection

Array to determine if a Spawning Node has any ports to which

an idle node is connected. When an idle node is found, the

search ks stop, the Idle Node Variable is set, add the BOOLEAN

return variable is set to TRUE, the First Port to Check variable

ks set to the next port to cheek on the next call to this routine.

Any ports connected to DIU's found during this search are entered

on a DIU list for later use. If no ports connected to idle

ports are found, then the BOOLEAN is set to FALSE. *)

pROCEDURE FoundAdjacentIdleNode (SpawningNode : INTEGER;

VAR SpawningNodeOutboar_ort : PortNameType;

VAR IdleNode : INTEGER;

VAR TargetNodeInboardPort : PortNameType;

NodeConnections : NodaArrayType;

NodeStatus : NodeStatusArray;

DIUList : D IUListQ_eueType;

GPCList : GPCListQ_eueType)

:BOOLEAN;

VAR PortIndex : PortNameType;

FoundIdleNode : BOOLEAN;

DIURecord : DIUSpawningReeord;

GPCRecord : GPCSpawningRecord;

SpawningNodeNumber : INTEGER;

IdleNodeNumber : INTEGER;

BEGIN

FoundldleNode :- FALSE;

SpawningNodeNumber :- FindNodaNumber (SpawningNode) ;

LOOP

CAS_ NodeConnections [SpawningNodeNumber] .

PortArray[SpawningNodeOutboardPort] .AdjacentElement OF

Node :

IF (NodeStatus[NodeConnections[SpawningNodeNumber].

PortArrayISpawningNodeOutboardPort].NodeNumber].

Status - Idle) Ah_ (NodeStatus[SpawningNodeNumber].

PortStatus[SpawninqNodeOutboardPort].Status - Idle) THEN

IdleNode :- NodeConnections[SpawningNodeNumberl.PortArray

[SpawningNodeOutboardPort].NodeAddress;

IdleNodeNumber :- NodeCon_ections[SpawningNodeNumber].PortArray

[SpawningNodeOutboardPort].NodeNumber;

FoundIdleNode :- TRUE;

PortIndex :- I;

LOOP

wITH NodeConnections[IdleNodeNumber].PortArray[PortIndex] DO

CASE AdjacentElement OF

Node :

IF NodeAddress - SpawningNode THEN

TargetNodeInboardPort :- PortIndex;

EXIT;

ELSE

PortIndex :- PortIndex + i;

END;

ELSE

8-125

PortIndex :- Portlndex + i;

END;

END;

END;

END;

[DIU:

NEW (DIURecord) ;

DIURecord ^ .SpawningNode :- SpawningNode;

DIURecord ^ .OutboardPort :- SpawningNodeOutboardPort;

INSERT DIURecord LAST IN DIUList;

i GPC:

(* This check keeps the root lank currently used

for growth from being put on the GPCList. *)

IF NodeStatus [SpawningNodeNttmber] .PortStatus [SpawningNodeOutboardPort].

Status - Idle THEN

NEW (GPCRecord) ;

GPCRecord ^ .SpawninqNode :- SpawningNode;

GPCRecord ^ . InboardPort :- SpawningNodeOutboardPort;

INSERT GPCRecord LAST IN GPCList;

END;

ELSE

END;

IF FoundIdleNode TH_N

EXIT;

ELSIF SpawningNodeOutboardPort < NumberOfPortsPerNode THEN

SpawningNodeOutboardPort := SpawningNodeOutboardPort + i;

ELSE

EXIT;

END;

END;

RETURN (FoundIdleNode) ;

END FoundAdjacentIdleNode;

**

PROCEDURE NextNodeToAdd(VAR GrowthStatus : NetworkGrowthProgressType;

NodeConnections : NodeArrayType;

VAR NodeStatus : NodeStatusArray;

DIUList

VAR Next SpawningNode

NodeToAddToNetwork

DIUElement

AddRemainingNodes IORequest

AddD IUIOReq_est

RequestToAddNode

: DIUListQueueType};

SpawningNodeType;

SpawningNodeType;

DIUSpawningRecord;

IORequestType;

IOKequestType;

DataPointer;

B-126

ProcQssin_o_dNode

RequestToAddDIU

ProcessingToAddDIU

Nodelndex

: ProcesslngUnit;

: DataPointer;

: ProcessingUnit;

: INTEGER;

BEGIN

(* Find out if all the ports on the spawning node have been checked,

if not continue from the current spawning node,

otherwise get a new spawning node. *}

LOOP

WITH GrowthStatus DO

IF FoundAdjacentIdleNode(SpawningNode, SpawningPort, TargetNode,

TargetPort, NodeConnections, NodeStatus, DIUList, GPCList) THEN

(*Add the idle node to spawning queue. *)

NEW(NodeToAddToNetwork);

NodeToAddToNetwork^.Node :- TargetNode;

INSERT NodeToAddToNetwork LAST IN SpawningQueue;

(* Update Status of the two nodes that are being used to

add the next node. *)

UpdateStatusLinkEnable(SpawningNode, SpawningPort, TargetNode,

TargetPort, NodeStatus);

EnableLink(SpawningNode, TargetNode, NodeStatus, AddRemainingNodesIORequest);

AddRemainlngNodesIORequest^.Chain^.NetworkToBeExecutedOn :- NetworkIDToManage;

AddRemainingNodesIORequest^.Identifier :- MyNodeID;

AddRemainingNodesIORequest^.ResponseExpected :- TRUE;

NEW(RequestToAddNode);

RequestToAddNode^.Message :- NetworkRequest;

RequestToAddNode^.IORequest :- AddRemainingNodesIORequest;

NEW(ProcessingToAddNode);

ProcessingToAddNode^.Priority :- NetworkManagerPriority;

ProcessingToAddNode^.ProcessingRequired :- ComputeTwoTransactionChain

+ NetworkResponseComputation;

ProcessingToAddNode^.WriteData :- FALSE;

ProcessingToAddNode^.ProcessID :- 'NW Add Node Processing';

ProcessingToAddNode^.Data :- RequestToAddNode;

NOW outport[IOPPort]^.ProcessorRequest <- ProcessinqToAddNode;

EXIT;

ELSIF QSize(SpawningQueue} - 0 THEN

FOR NodeIndex :- I TO NumberOfNodes DO

IF NodeStatus[Nodelndex].Status - Idle THEN

NodeStatus[NodeIndex].Status := Failed;

END;

END;

(* Set mode to add DIUs. *);

Mode :- AddDIUS;

(* All good nodes are a part of the network, now start

adding dius. *)

DID'Element :- FirstQ(DIUList);

REMOVE DIUElement FROM DIUList;

(* Update spawning node and spawning port status so

network manager will know what status to change.

WITH DIUElement ^ DO

*)

B-127

NodeStatus [FindNodeNumber (SpawningNode)]. PortStatus

{OutboardPort] .Status :- Active;

NodeStatus [FindNodeN_r (Spaw_iagNode)] .PortStatus

[OutboardPort] .Direction :- Outboard;

AddDIUToNetwork(SpawningNode, OutboardPort, NodeStatus,

AddD IUIOReq_est) ;

(* Data Collection. *}

DIUAddress :- NodeConnections [FindNodeNumber (SpawningNode}].

PortArray |outboardPort] .DIUAddress ;

END;

DI SFOSE (D IUE lament) ;

AddDIUIORequest^.Chain^.NetworkToBeExecutedOn :- NetworkIDToManage;

AddDIUIORequest ^ .Identifier :- MyNodeID;

AddDIUIOReq_est ^ .ResponseExpected :- TRUE;

NEW (RequestToAddDIU) ;

Reques tToAddDIU^. Mes sage :- NatworkRequest;

RequestToAddDIU ^. IORequest :- AddDIUIORequast;

NEW (ProcessingToAddDIU) ;

ProcessingToAddDIU ^ .Priority :- NetworkManagerPriority;

ProcessingToAddDIU^.ProcessingRequired :- ComputeOneTransactionChain

+ Networ kRespons eComput at ion;

ProcessingToAddDIU ^.ProcesaID :- 'NW Add DIU Processing' ;

ProcessingToAddDIU ^ .WriteData :- FALSE;

ProcessingToAddDIU ^ .Data :- RequastToAddDIU;

NOW outport [IOPPort] ^, ProcessorRequest <- ProcessingToAdc%DIU;

EXIT;

END;

REMOVE FIRST NextSpawningNode FROM SpawninqQueue;

SpawningNode :- NextSpawningNode^.Node;

SpawningPort :- I;

DISPOSE (NextSpawningNode) ;

END;

END;

END NextNodeToAdd;

**

(* This procdure performs the diagnostic checks durning network growth.

Since the current model does not include the failure modes that

this diagnostic sequence checks, not attempt is made to process the

responses. It is assumed that the chains produced by this routine

will complete normally. *)

PROCEDURE RunDiagnostic(VARDiagnosticStatus : DiagnosticRecordType;

VAR NodeStatus : NodeStatusArray;

NodeConfiguration : NodeArrayType);

VAR TestNodeNumbar

TargetNodQNumber

ProcessingTime

DisconnectIORequest

DiagnosticRequest

DiagnosticProcessing

: INTEGER;

: INTEGER;

: REAL;

: IORequestType;

: DataPointer;

: ProcessingUnit;

BEGIN

WITH DiagnosticStatus DO

TestNodeNumber :- FindNodeNumber(TestNode};

(* Determine if the current test port should run tests.

If so, start tests, otherwise, determine if all ports

8-128

have been tested. If so, run reset configuration and

talker out of turn test. *}

IF Diagnostic - LinkEnable TREN

(* Determine the next port under test. *)
LOOP

WITH NodeConfiguratlon [TestNodeNumber] .PortArray [Test.Port] DO

IF (AdjacentElement - Node} AND

(NodeStatus [NodeNumber]. Status - Idle) AND

(NodeStatus {TestNodeNumber] .PortStatus

ITestPort] .Status - Idle) TH_

_* A Port with an adjacent idle node has been found.

TargetNode :- NodeConfiguration[TestNodeNumber].

P ortArray [TestPort].NodeAddres s;

TargetPort :- NodeConfiguration[TestNodeNumber].

PortArray [TestPort] .Port;

.I

EXIT;

ELSIF Test.Port < NumberOfPortsPerNode THEN

TestPort :- Test-Port + i;

ELSIF PortDiagnosticsRun THEN

(* No more ports to test and some idle ports have

been tested. *}

Diagnostic :- ResetConfiguration;

EXIT;

ELSE

(* This node has no idle ports to run d/agnostics on,

no reason to reset its configuration. *)

Diagnostic :- TalkerOutOfTurn;

EXIT;

END;

END;

END;

TargetNodeNumber :- NodeConfiguration{TestNodeNumber].

PortArray{TestPort],NodeNumber;

NEW(DiagnosticReq-uest);

DiagnosticRequest^.Message :- NetwcrkRequest;

CASE Diagnostic OF

LinkEnable :

(* Update port status so that Enable Link will generate

the proper co_m_nd. Only set status since it will be

changed back later in diagnostics. *)

PortDiagnosticsRun :- TRUE;

NodeStatus[TestNodeNumber].PortStatus[TestPort].Status :- Active;

NodeStatusITargetNodeNum_er].PortStatus[TargetPort].Status :- Active;

EnableLink (TestNode, Target.Node, NodeStatus, DiagnosticReguest^.IORequest};

DiagnosticRequest^.IORequest^.Chain^.ChainIdentifier :- 200;

DiagnosticRequest^.IORequest^.Chain^.NetworkToBeExecutedOn :- NetworkIDToManage;

DiagnosticRequest^.IORequest^.Identifier :- MyNodeID;

DiagnosticRequest^.IORequest^.ResponseExpected :- TRUE;

B-129

ProcessingTime :- ComputeTwoTran sac t io nChain;

Diagnostic :- DisabledTransmit;

DisabledTransmit:

IF NOT (LinkEnableSucessful) THEN

(* Mark the links failed, generate request to

disconnect failed links, and set diaqnostic

mode to link enable. *)

NodaStatus [FindNodeNumber (Te stNode)]. PortStatus

[Test.Port] .Status :- Failed;

NodeStatus [FindNodeN_mber (TargetNode)].

PortStatus [TargetPort]. Status :- Failed;

Delet eNodeFromNetwork (Tes tNode, Tea tPort, TargetNode,

TargetPort, NodeStatus, DiagnosticRequest ^. IORequest) ;

DiagnosticRequest^.IORequest^.Chain^.NetworkToBeExecutedOn := NetworkIDToManage;

DiagnosticReq_est^.IOR_quest^.Identifier :- MyNodeID;

DiagnosticRequest^.IORequestA.ResponseExpected :- TRUE;

ProcessingTime :- ComputeTwoTransactionChain;

Diagnostic :- LinkEnable;

ELSE

NodeStatus[TargetNodeNumber].PortStatus[TargetPort].Status := Idle;

DisabledTransmitTest(TargetNode, NodeStatus, DiaqnosticRequest^.IORequest);

DiagnosticRequest^.IORequest^.Chain^.NetworkToBeExecutedOn :- NetworkIDToManage;

DiagnosticRequest^.IORequest^.Identifier :- MyNodeID;

DiagnosticRequest^.IORequestA.ResponseExpected :- TRUE;

ProcessingTime := ComputeOneTransactionChain;

Diagnostic :- DisabledRetransmit;

END;

DisabledRetransmit:

NodeStatus[TestNodeNumber].PortStatus[TestPort].Status := Idle;

DisabledRetransmitTest(TestNode, TargetNode, NodeStatus,

DiagnosticRequest^.IOReq_est);

DiagnosticRequest^.IORequest^.Chain^.NetworkToBeExecutedOn := NetworkIDToManage;

DiagnosticRequest^.IORequest^.Identifier :- MyNodeID;

DiagnosticRequest^.IORequest^.ResponseExpected :- TRUE;

ProcessingTlme :- ComputeTwoTransactionChain;

Diagnostic := LinkEnable;

TestPort :- TestPort + I;

ResetConfiguration:

ResetConfigurationCommand(TestNode, NodeStatus,

DiagnosticRequest^.IORequest);

DiagnosticRequest^.IOKequest^.Chain^.NetworkToBeExecutedOn := NetworkIDToManage;

DiagnosticRequest^.IORequest^.Identifier :- MyNodeID;

DiaquosticRequest^.IORequest^.ResponseExpected :- TRUE;

ProcessingTime := ComputeOneTransactionChain;

Diagnostic :- TalkerOutOfTurn;

TalkerOutOfTurn:

DiagnosticRequest^.IORequest :- MakeMonitorRequest(NodeConnections);

WITH DiagnosticRequest^.IORequest ^ DO

(* PRB *)

Chain^.NetworkToBeExecutedOn :w NetworkIDToManage;

Identifier := MyNodeID;

ResponseExpected :- TRUE;

END;

8-130

ProcessingTime

Diagnostic

:= 0.0;

:- DiagnosticsComplete;

END;

END;

NEW(DiagnosticProcessing);

WITH DiagnosticProcessing ^ DO

Priority :- NetworkManagerPriority;

ProcessingRequired :- ProcessingTime + NetworkResponseComputation;

ProcesslD :- 'NMDiagnostics';
WritaData :- FALSE;

Data :- DiagnosticRequest;

END;

NOW outportIIOPPort]^.ProcessorRequest <- DiagnosticProcessing;

END RunDiagnostic;

**

(* This procadure updates the network status variables after a successful
branch reconnect. It sets the status of all the active ports

of the failed node set, except the node through which the reconnect

was made, to outboard. *)

PROCEDURE UpdataNodeStatusBranchReconnect(ReconnectNode : INTEGER;

ReconnactPort : PortNameType;

FailedRoot : INTEGER;

VARNetworkStatus : NodeStatusArray};

VAR ReconnectNumber : INTEGER;

FailedRootNumber : INTEGER;

SpawningNumber : INTEGER;

TargetNumber : INTEGER;

InboardPor t : PortNameType;

NewInboardPort : PortNameType;

OutboardPort : PortNameType;

BEGIN

ReconnectNumber := FindNodeNmnber (ReconnectNode) ;

FailedRootNumber := FindNodeNumber (FailedRoot) ;

(* Since the repair was sucessful, there will be two ports on the
Reconnect node that have the status "inboard".

One is due to the reconnection of the branch is

connected to the Reconnect port, the other is the inboard

port prior to the failure, this one should now be outboard. *)

SpawningNumber :- ReconnectNumber;

[* Find the port that must be changed to outboard.

OutboardPort := I;

LOOP

*)

WITH NetworkStatus[SpawningNumber].PortStatus[OutboardPort] DO

IF (Status = Active) AND (Direction = Inboard) AND

(OutboardPort <> ReconnectPort) THEN

(* The old inboard port has been found. *)

EXIT;

ELSE

OutboardPort := OutboardPort + i;

END;

END;

B-131

END;

LOOP

(* Change Status of old inboard port to outboard. *)

NetworkStatus [SpawnlngNumber].PortStatus [OutboardPort].Status := Active;

NetworkStatus [SpawningNumber] .PortStatus IO_tboardPort] .Direction := Outboard;

(* Change the status of the port adjacent to the new outboard port

to inboard. *)

WITH _onnections [SpawningN_mber] .PortArray[OutboardPort] DO

NetworkStatus [NodeNumber] .PortStatus [Port] .Status '- Active;

NetworkStatus [NodeNumber] .PortStatus [Port] .Direction '- Inboard;

IF NodaNumber - FailedRootNumber TKEN

(* No more port statuses need to be changed. *)

EXIT;

ELSE

SpawningN_mbar :- NodeNumber ;

OutboardPort :- I;

NewInboardPort "- Port;

LOOP

WITH NetworkStatus [SpawningNumber] .PortStatus [

O_tboardPor t] DO

IF (Status- Active) AND (Direction- Inboard) AND

(OutboardPort <> NewInboardPort) THEN

(* The old inboard port has been found. *)

EXIT;

ELSE

OutboardPort :- OutboardPort + i;

END;

END;

END;

END;

END;

END;

END UpdateNodeStatusBr anchReconnect;

PROCEDURE UpdateStatusLinkEnable(SpawningNode : INTEGER;

SpawningPort : PortNameType;

TargetNode : INTEGER;

TargetPort : PortNameType;

VAR NodeStatus : NodeStatusArray};

VAR SpawningNumber : INTEGER;

TargetNumber : INTEGER;

BEGIN

SpawningNumber := FindNodeNumber(SpawningNode);

Target_Number :- FindNodeNumber(TargetNode);

NodeStatus[SpawningNumber].PortStatus[SpawningPort].Status :- Active;

NodeStatus[SpawningNumber],PortStatus[SpawningPort],Direction := Outboard;

B-132

NodeStatu$ [TargetNumber]. PortStatus [Target.Port]. Status

NodeStatus [TargetNumber] .PortStatus [TargetPort] .Direction

•- Active;

:- Inboard;

E_ Updat eSt atu sLinkEnable;

PROCEDURE StartNetworkGrowth(RootLinkToGrowFrom : INTEGER;

VAR GrowPrpgress : NetworkGrowthProgressType;

NodeConnactions : NodeArrayType;

VARNodeStatus : NodeStatusArray;

NodeslnThisNatwork : INTEGER);

VARRootNodaNumber : INTEGER;

NodeIndax : INTEGER;

Portlndex : PortNameType;

GrowIORequest : IOReq_astType;

ProcessingTime : REAL;

Req_estToGrow : DataPointer;

GrowRequestProcessinq : ProcessingUnit;

BEGIN

(* Now find the Root Node connected to the active IOn. *)

FOR NodeIndex :- 1 TO NodeslnNetwork DO

FOR PortIndax :- I TO NumberOfPortaParNode DO

IF (NodeConnections[NodeIndax].PortArray{Portlndex].

AdJacentElement -GPC} AND

(Noc_K:onnections[NodeIndex].PortArray[Portlndex].

GPCAddress - RootLinkToGrowFrom} THEN

GrowProgress.RootNodaAchiress :- NodeConnections[Nodelndex].NodeAddress;

RootNodeNumber :- FindNodeNumber(GrowProgress.RootNodeAddress);

GrowProgress.lnboardPort :- Portlndex;

END;

END;

END;

WITH GrowProgress DO

Mode :. GrowToRootNoda;

(* Set status of Root Node that is being used for network growth. *)

NodaStatus[RootNodeN_Enber].PortStatus{InboardPort].Status :- Active;

NodeStatus[RootNodeNumber].PortStatus[InboardPort].Direction :- Inboard;

GROWTOROOTNODE (RootNodeAddress, InboardPort, NodeStatus, GrowIORequest) ;

END;

GrowIORequest^.Chain^.NetworkToBeExecutedOn :- NetworkIDToManage;

GrowIOReq_est^.Idantifier :- MyNodeID;

GrowIORequest^.RasponseExpected :- TRUE;

(* This is the processing time required to execute this procedure. *)

ProcessingTime :- FLOAT(NodesInThisNetwork) * GrowInitializeNodeTime;

NEW(RequestToGrow);

RequestToGrow^.Massage :- GrowRequest;

RequestToGrow^.IORequest :- GrowIOReq_ast;

NEW(GrowRequestProcessing);

GrowRequestProcessing^.Priority :- NetworkManagerPriority;

GrowRequastProcassingA.ProcessingReq_irad :- ProcassingTime;

GrowRequestProcessing^.WriteData :- FALSE;

GrowRequestProcessing^.ProcessID :- 'NW Grow Processing';

GrowRequestProcessing^.Data :- RequestToGrow;

B-I_

NOW outport[IOPPort]^.ProcessorRequest <- GrowRequestProceasing;

END StartNetworkGrowth;

PROCEDURE NetworkRepair(FaultDetectionData : ChainStatusData;

VAR NodeStatus : NodeStatusArray;

NodeConnections : NodeArrayType;

VAR ErrorReport : ErrorRecordType;

VARRepairMode : RepairNetwork24odeType);

VARSpawningNode : INTEGER;

SpawningPort : PortNameType;

SpawningNodeNumber : INTEGER;

DisconnectIOReq_est : IORequestType;

RequestToDisconnectLink : DataPointer;

ProcessingToDisconnectLink : ProcessingUnit;

RequestNewState : DataPointer;

ProcessingNewState : ProcessingUnit;

BEGIN

(* Analysis monitor response to determine the fault type, *)

ErrorAnalysis(FaultDetectionData, NodeStatus, NodeConnections,

ErrorReport, AnalysisPortDecisions);

IF (ErrorReport.Status - AnalysisSucessful) AND

(ErrorReport.FaultAnalysisRecord.Fault m LinkFailure) THEN

REPORT "%12.8f" clock TAGGED "Link Failure";

RepairMode :- DisconnectLink;

(* Disconnect the failed tree from the rest of the

network through the broken node. *)

WITH ErrorReport.FaultAnalysisRecord DO

SpawningNode :- NodeConnections[FindNodeN_mber(

FailedRoot)].PortArray[

FailedlnboardPort].NodeAddress;

SpawningNodeNumber :- NodeConnections[FindNodeNumber(

FailedRoot)].PortArray[

FailedInboardgort].NodeNumber;

SpawningPort := NodeConnections[FindNodeNumber(

FailedRoot)].PortArrayl

FailedInboardPort].Port;

(* Update Status of the failed Links. *)

NodeStatusISpawningNodeNumber].PortStatus[SpawningPort].Status := Failed;

NodeStatus[FindNodeNumber(FailedRoot)].PortStatus[

FailedlnboardPort].Status :- Failed;

DeleteNodeFromNetwork(SpawningNode, SpawningPort, FailedRoot,

FailedlnboardPort, NodeStatus, DisconnectIORequest);

END;

DisconnectIORequest^.Chain^.NetworkToBeExecutedOn :- NetworkIDToManage;

DisconnectIORequest^.Chain^.ChainIdentifier := 300;

DisconnectIORequest^.Identifier := MyNodeID;

DisconneotIORequest^.ResponseExpected :- TRUE;

NEW(RequestToDisconnectLink);

RequestToDisconnectLink^.Message := NetworkRequest;

RequestToDisconnectLink^.IORequest := DisconnectIOReq_est;

NEW[ProcessingToDisconnectLink);

ProcessingToDisconnectLink^.Priority :m NetworkManagerPriority;

ProcessingToDisconnectLink^.ProcessingRequired :- ComputeTwoTransactionChain

+ NetworkResponseComputation;

ProcessingToDisconnectLink^.WriteData :- FALSE;

ProcessingToDisconnectLink^.ProcessID :_ 'Disconnect/Error Processing';

_134

ProcassingToDisconnectLink^.Data :- RequestToDisconnectLink;

NOW outport[IOPPort]^.ProcessorRequest <- Processing"foDisconnectLink;

ELSE

WriteString(ParamOut, "Don't know how to repair this failure."};

WriteIm(ParamOut);

WriteString(ParamOut, "Returning network to service.");

WriteLn(ParamOut};

REPORT "%12.8f" clock TAGGED "Fault Analysis Unsucessful";

REPORT "%d" NetworkIDToManage TAGGED "ASSUME DIU LINK FAILURE, RETURN TO SERVICE";

WITH NatworkState ^ DO

NetworkID :- NetworkIDToManage;

State :- InService;

MonitorChain :- DiagnosticStatus.TalkerRequest^.Chain;

END;

NEW(RequestNewState);

Req_estNewState^.Message :- NewState;

RequestHewState_.StateDaCa :- NetworkState;

NEW(ProcessingNewState);

ProcessingNewStateA.Priority :- NetworkManagerPriority;

ProcessingNewState^.ProcessingRequired :- ChangeNetworkStatus

+ NetworkResponseComputation;

ProcessingNewStateA.WriteData :- FALSE;

ProcessingNewState^.ProcessID :- 'New State Processing';

ProcassingNewState^.Data :- Req_estNewState;

NOW outport[10PPort]^.ProcessorRequest <- ProcessingNewState;

END;

END NetworkRepair;

PROCEDURE DisconnectLinkProcess(ErrorReport : ErrorRecordType;

DisconnectResponse : ChainStatusData;

VAR NodeStatus : NodeStatusArray;

NodeConnections : NodeArrayType);

VAR ReconnectIORequest : lOReque_tType;

RequestForErrorAnalysis : Data2ointer;

ProcessingForErrorAnalysis : ProcessingUnit;

ReconnectRootDecisions : INTEGER;

BranchReconnectDecisions : INTEGER;

IsolationPortDecisions : INTEGER;

ErrorAnalysisT/me : REAL;

BEGIN

ReconnectRootDecisions := 0;

BranchReconnectDecisions := 0;

IF ChainExecutedWithoutError(DisconnectResponse) THEN

WriteString(ParamOut, "Disconnect Link chain executed without error."};

WritaLn(ParamOut);

WriteString(ParamOut, "Something is wrong in network. ");

WriteLn(ParamOut);

WriteLn(ParamOut);

ELSE

WITH ErrorReport.FaultAnalysisRecord DO

IF ReconnectRoot(NodeConnections, NodeStatus, FailedRoot,

B-135

FailedNodeSet, Reconnect lORequest,

ReconnectRootDecisions } THEN

RepairNetworkMode :- RaconnectLink;

ReconfigurationStrategy :- ReconnectLink;

ELSIF FailedNodeCount - 1 THF_N

(* This situation should not happen for the IAPSA II

experiments. *)

WriteString(ParamOut, "Found a node which is unreachable.") ;

Write/n (ParamO_t) ;

WriteString(ParamOut, "Logic not implace to repair this fault.");

WriteLn (ParamOut) ;

WriteLn (ParamOur } ;

ELSE

(* Reconnect through the branches of the failed tree. *)

BranchReconnect{ErrorReport, NodeConnections, BranchNode,

BranchPort, NodeStatus, BranchesOfRoot,

ReconnectIORequest,

BranchReconnect/)ecisions);"

RepairNetworkMode :- Reconnect.Branch;

ReconfigurationStrategy :- ReconnectBranch;

END;

IsolationPortDecisions :- ReconnectRootDecisions +

BranchReconnectDecisions;

ErrorAnalysisTlme :- FixedErrorReportAnalysis +

(FLOAT(AnalysisPort/)ecisions +

IsolationPort/)ecisions) *

PortErrorAnalysis)

+ ComputeTwoTransactionChain;

ReconnectIORequest^.Chain^.NetworkToBeExecutedOn :- NetworkIDToManage;

ReconnectIORequest^.Chain^.Chainldentifier :- 301;

ReconnectIORequest^.Identifier :- MyNodeID;

ReconnectIORequest^.ResponseExpected :- TRUE;

NEW(RequestForErrorAnalysis);

Req_estForErrorAnalysis^.Message :- FaultAnalysis;

RsquestForErrorAnalysis^.IORequest :- ReconnectIORequest;

NEW(ProcessingForErrorAnalysis};

ProcessingForErrorAnalysis^.Priority :- NetworkManagerPriority;

ProcessingForErrorAnalysis^.ProcessingRequired :- ErrorAnalysisTime

+ NetworkResponseComputation;

ProcessingForErrorAnalysis^.WriteData :- FALSE;

ProcessingForErrorAnalysis^.ProcessID :- 'Link/Branch Connect Processing';

ProcessingForErrorAnalysis^.Data :- RequestForErrorAnalysis;

NOW outport[IOPPort]^.ProcessorReq_est <- ProcessingForErrorAnalysis;

END;

END;

END DisconnectLink_rocess;

**

PROCEDURE ReconnectLinkProcess(ErrorReport : ErrorRecordType;

ReconnectResponse : Cha£nStatusData);

VAR TalkToRoot0fFailedTreeIORequest : IORequestType;

RequestToTalkToRoot : DataPointer;

Process±ngToTalkToRoot : ProcessingUnit;

BEGIN

B-136

IF ChainExecutedWithoutError (ReconnectResponse) THEN

(* Reconnection was suceasful. Attempt to talk to root of

failed tree to see if failed link assumption was true. *}

RepairNetworkMode :- TalkToRootFailedTrea;

WITH ErrorReport. FaultAnalysisRecord DO

TalkToRootOfTree (FailedRoot, TalkToRootOfFailedTreeIORequest) ;

END;

TalkToRootOfFailedTreeiORequest^.Chain^.NetworkToBeExecutedOn :w NetworkIDToManage;

TalkToRootOfFailedTreeIOReq_est ^ .Chain ^ .Chainldentifier :- 302 ;

TalkToRootOfFailedTreeIORequest ^ .Zdentifier :- MyNodeID;

TalkToRootOfFailedTr ee IOReques t ^. Respons eExpect ed :- TRUE;

NEW (Reques tToTalkToRoot) ;

RequestToTalkToRoot ^. Me s sage :- NetworkRequest;

RequestToTalkToRoot ^ . IORequest :- TalkToRootOfFailedTreeIORequest;

NEW (ProceasingToTalkToRoot) ;

P roces s ingToTalkToRoot ^. Prior ity :- NetworkManagerPr ior ity;

ProcessingToTalkToRoot^.ProcessingRequired :- ComputeOneTransactionChain

+ Networ kRe sponseC omputat ion;

Process ingToTalkToRoot ^. WriteData :- FALSE;

ProcessingToTalkToRoot^.ProceasID :- 'NW Talk To Root Processing';

Process ingToTalkToRoot ^. Dat a :- RequestToTalkToRoot;

NOW outport[IOPPort]^.ProcessorReq_est <- ProcessingToTalkToRoot;

ELSE

WriteString(ParamOut, "Reconnect Link encoutered network problems.");

WriteLn(ParamOut);

WriteString(ParamOut, "Either _E4 logic error or network problem. ");

WriteLn(ParamOut};

WriteLn(ParamO_t);

END;

END ReconnectLinkProcess;

PROCEDURE RQconnectBranchProcess(ErrorReport : ErrorRecordType;

ReconnectResponse : ChainStatusData);

VAR TalkToRootOfFailedTreeIORequest : IORequestType;

Req_estToTalkToRoot : DataPointer;

ProcessingToTalkToRoot : ProcessingUnit;

BEGIN

IF ChainExecutedWithoutError(ReconnectResponse)THEN

(* Branch reconnect was sucessful. Now talk to the root

of the failed tree. *)

RepairNetworkMode :- TalkToRootFailedTree;

WITH ErrorReport.FaultAnalysisRecord DO

TalkToRootOfTree(FailedRoot, TalkToRootOfFailedTreeIORequest);

END;

TalkToRootOfFailedTreeIORequest^.Chain^.NetworkToBeExecutedOn :-

NetworkIDToManage;

TalkToRootOfFailedTreeIOReq_est^.Chain^.Chainldentifier :- 302;

TalkToRootOfFailedTreeIORequest^.Identifier :- MyNodeID;

TalkToRootOfFailedTreeIORequest^.ResponseExpected :- TRUE;

B-137

NEW(RequestToTalkToRoot);

RequeetToTalkToRoot^.Message :- NetworkRequest;

RequeetToTalkToRoot^.IORequest :- TalkToRootOfFailedTreeIORequeet;

NEW(ProcessingToTalkToRoot);

ProcessingToTalkToRoot^.Priority :- NetworkManagerPriority;

ProcessingToTalkToRoot^.ProcessingRequired :- ComputeOneTransactionChain

+ NetworkResponseComputation;

ProcessingToTalkToRoot^.WritaData :- FALSE;

ProcessingToTalkToRoot^.ProceseID :- 'NW Talk To Root Processing';

ProcesslngToTalkToRoot^.Data :- RequestToTalkToRoot;

NOW outport[IOPPort]^.ProcessorRequest <- ProcessingToTalkToRoot;

ELSE

(* Failure here ind/cates something unexpected happened.

Either model is not working right, a latent failure

is present, a second failure has occured, or there is a

problem in the network manager logic. *)

WriteString(ParamOut, "Repair action for branch reconnect unsucessful. ");

WriteLn(ParamOut);

WriteString(ParamOut, "SI]_JLATION ERROR.");

WriteLn(ParamOut);

END;

END ReconnectBranchProcess;"

PROCEDURE TalkToRootProcess(Responee : ChainStatusData;

ReconnectNode : INTEGER;

ReconnectPort : PortNemeType);

VAR Re_estNewState : DataPointer;

ProcessingNewState : ProcessingUnit;

BEGIN

IF ChainExecutedWithoutError(Response) TKEN

(* Successfully talked to root of failed tree so link has been

repaired. If repair strategy was branch reconnect, then

update Node Status to reflect the new orientation of the nodes

in the failed node set. *)

IF ReconfigurationStrategy - KeconnectBranch THE_

UpdateNodeStatusBranchReconnect(ReconnectNode, ReconnectPort,

ErrorReport.FaultAnalysisRecord.FailedRoot, NodeStatus);

END;

WITH DiagnosticStatus.TalkerRequest^.Chain ^ DO

Num_rOfTransactions :- QSize(DiagnosticStatue.TalkerReq_est^.Chain ^ .

TransactionQ_eue};

NetworkToBeExecutedOn :- NetworkIDToManage;

END;

NEW(NetworkState);

WITH NetworkState ^ DO

NetworkID := NetworkIDToManage;

State := InService;

MonitorChain := DiagnosticStatus.TalkerRequest^.Chain;

END;

B-138

NEN(RequestNewState};

Req_estNewState^.Message :- NewState;

RequestNewState^.StateData :- NetworkState;

NEW(ProcessingNewState);

ProcessingNewState^.Priority :- NetworkManagerPriority;

ProcessingNewState^.ProcessingRequired :- ChangeNetworkStatus

+ NetworkResponseComputation;

ProcesslngNewState^.WriteData :- FALSE;

ProcessingNewState^.ProcessID :- 'New State Processing';

ProcessingNewState^.Data :- RequestNewState;

NOW outport[IOPPort]^.ProcessorRaquest <- ProcessingNewState;

ELSE

(* Could not talk to root of failed tree. Link failure

assumption wrong. Failure is a node failure. *)

WriteLn(ParamOut);

NriteStrlng(ParamOut, "TIME TO IMPLEMENT NODE FAILURE ROUTINE");

WriteLn(ParamOut);

WriteLn(ParamOut);

END;

TalkToRootProcess;

PROCEDURE RootNodeProcess(RootNode : INTEGER;

VAR GoodRootNode : BOOLEAN;

SpawningQ_eue : Spawni,gQueueType;

VARGrowMode : GrowNetworkModeType;

VAR DiagnostlcStatus : DiagnosticRecordType;

GrowToRootNodeResponse : ChainStatusData;

VAR NodeStatus : NodeStatusArray);

VAR SpawningElement : SpawningNodeType;

BEGIN

IF NOT GoodRootNode THEN

IF ChainExecutedWithoutError(GrowToRootNodeResponse) THEN

GoodRootNode :- TRUE;

(* Put Root Node on the Spawning Queue. *)

NEW($pawningElement);

SpawningElement^.Node :- RootNode;

INSERT SpawningElement LAST IN SpawningQueue;

NodeStatus_FindNodeNumber(RootNode)].Status :- Active;

(* A good root node has been found, change modes. *)

GrowMode :- DiagnosticCheck;

DiagnosticStatus.Diagnostic :- LinkEnable;

DiagnosticStatus.TestNode :- RootNode;

DiagnosticStatus.TestPort :- I;

DiagnosticStatus.PortDiagnosticsRun :- FALSE;

RunDiagnostic(DiagnosticStatus, NodeStatus, NodeConnections);

ELSE

WriteString(ParamOut, "First Root Link tried ");

WriteString(ParamOut, "was bad.");

WriteLn(ParamOut);

END;

8-139

END;

END RootNodeProcess ;

PROCEDURE AddNodeProcess(VAR GrowStatus : NetworkGrowthProgressType;

Response : ChainStatusData;

VAR StatusOfDiagnostlcs : DiagnosticRecordType;

VAR PreviousAddFailed : BOOLEAN;

VARNodeStatus : NodeStatusArray;

NodeConnections : NodeArrayType};

VAR DisconnectIORequest : IORequestType;

RequestDisconnectNode : DataPointer;

ProcessingDisconnectNode : ProcessingUnit;

BEGIN

IF ChainExecutedWithoutError(Response) THEN

(* Update the status of the spawning node and the target

node as a result of adding the new node. *)

NodeStatus[FindNodeNumber(GrowStatus.TargetNode)].Status :- Active;

GrowStatus.Mode :- DiagnostlcCheck;

StatusOfDiagnostics.Diagnostic :- LinkEnable;

StatusOfDiagnostics.TestNode :- GrowStatus.TargetNode;

StatusOfDiagnostics.TestPort := i;

StatusOfDiagnostics.PortDiagnosticsRun :- FALSE;

RunDiagnostic(StatusOfDiagnostics, NodeStatus, NodeConnections);

ELSIF PreviousAddFailed THEN

PreviousAddFailed := FALSE;

NextNodeToAdd(GrowStatus, NodeConnections, NodeStatus, DIUList};

ELSE

(* The previous try to connect to a node was unsucessful.

Assume that the link is b_oken. Update link statuses to reflect.

PreviousAddFailed :- TRUE;

,)

(* Update Status of the two nodes that were unsuccuessfully

added to the network. *}

N°deStatus[FindN°deNumber(Gr°wStatus'SpawningN°de)]'P°rtStatus[

GrowStatus.SpawningPort].Status :- Failed;

NodeStatus[FindNodeNumber(GEowStatus.TargetNode)].PortStatus[

GrowStatus.TargetPort].Status :- Failed;

DeleteNodeFromNetwork(GrowStatus. SpawningNode, GrowStatus.SpawningPort,

GrowStatus.TargetNode, GrowStatus.TargetPort, NodeStatus, DisconnectIORequest);

DisconnectIORequest^.Chain^.NetworkToBeExecutedOn :- NetworklDToManage;

DisconnectIOReq_est^.Identifier :- MyNodeID;

DisconnectIOReq_est^.ResponseExpected :- TRUE;

(* Disconnect failed link. *)

NEW(RequestDisconnectNode};

WITH RequestDisconnectNode ^ DO

Message :- NetworkRequest;

IORequest :- DisconnectIORequest;

END;

NEW(ProcessingDisconnectNode);

B-140

WITH ProcessingDisconnectNode ^ DO

Priority :- NetworkManagerPriority;

ProcessingRequired :- ComputeTwoTransactionChain

+ NetworkResponseComputation;

WriteData :- FALSE;

ProcessID :- 'NW Disconnect Node Processing';

Data :- RequestDisconnectNode;

END;

NOW outport[IOPPort]^.ProcessorReq_est <- ProcessingDisconnectNode;

END;

END AddNodeProcess;

**

PROCEDURE AddDIUProcess(VAR GrowStatus : NetworkGrowthProgressType;

Response : ChainStatusData;

VAR NodeStatus : NodeStatusArray);

VARDIUEIement

AddDIUIORoquest

GPCEleme_t

AddGPCIORequest

AddDIURequest

ProcessAddDIU

AddGPCRequest

ProcessAddGPC

: DIUSpawningRecord;

: IORequestType;

: GPCSpawningRecord;

: IORequestType;

: DataPointer;

: ProcessingUnit;

: DataPointer;

: ProcessingUnit;

BEGIN

IF ChainExecutedWithoutError(Response) THEN

DIUElement :- FirstQ(DIUList);

IF DIUElement <> NIL THEN

REMOVE DIUElement FROM DIUList;

I* Update Status of node that is conected to the DIU that

is being added to the network. *)

WITH DIUElement ^ DO

NodeStatus[FindNodeNumber(SpawningNode)].

PortStatus[OutboardPort].Status :- Active;

NodeStatus[FindNodeNtuRber(SpawningNode)].

PortStatus[OutboardPort].Direction :- Outboard;

AddDIUToNetwork(SpawningNode, OutboardPort, NodeStatus, AddDIUIORequest);

(* Data Collection. *)

GrowStatus.DIUAddress :- NodeConnections[FindNodeNumber (SpawningNode}].

PortArrayIOutboardPort].DIUAddress;

END;

DISPOSE(DIUEIement);

AddDIUlORequest^.Chain^.NetworkToBeExecutedOn :- NetworklDToManage;

AddDIUIORequest^.Identifier :- MyNodeID;

AddDIUIORequest^.ResponseExpected :- TRUE;

NEW(AddDIURequest);

AddDIURequest^.Message :- NetworkRequest;

AddDIURequest^.IORequest :- AddDIUIORequest;

NEW(ProcessAddDIU);

ProcessAddDiU^.Priority :. NetworkManagerPriority;

ProcessAddDIU^.ProcessingRequired :- ComputeOneTransactionChain

+ NetworkResponseComputation;

ProcessAddDIU^.WriteData :- FALSE;

B-141

ProcessAddDIu^.ProcessID :- 'NW Add DIU Processing';

ProcessAddDIU^ .Data :- AddDIURequest;

NOW outport IIOPPort]^.ProcassorRequest <- ProcessAddDIU;

ELSE

(* All DIUs have been added to the network.

connections. Set mode to add GPCs. *)

GrowStatus.Mode :- AddGPCS;

Now add the GPC

GPCElement :- FirstQ(GPCList);

R_MOVE GPCElement FROM GPCList;

(* Update status of the node connected to the spare root

link connection to be added to the network. *)

WITH GPCElement ^ DO

NodeStatus[FindNodeNumber (SpawningNode)].

PortStatus[InboardPort].Status :- Active;

NodeStatus[FindNodeNumber(SpawningNode}].

PortStatusIInboardPort].Direction :- Inboard;

AddGPCToNetwork (SpawningNode, InboardPort, NodeStatus, AddGPCIORequest) ;

GrowStatus.SpareRootNodeAddress :- SpawningNode;

END;

DISPOSE(GPCEIement);

AddGPCIORequest^.Chain^.NetworkToBeExecutedOn :- NetworkIDToManage;

AddGPCIORequestA.Identifier :- MyNodeID;

AddGPCIORequest^.ResponseExpected :- TRUE;

NEW(AddGPCRequest);

AddGPCRequest^.Message :- NetworkRequest;

AddGPCRequestA.IORequest :- AddGPCIOReq_est;

NEW{ProcessAddGPC);

ProcessAddGPC^.Priority :- NetworkManagerPriority;

ProcessAddGPC^,ProcessingRequired :- ComputeOneTransactionChain

+ NetworkResponseComputation;

ProcessAcldGPc^.WriteData :- FALSE;

ProcessAddGPC^.ProcessID :- 'NW Add GPC Processing';

ProcessAddGPC^.Data := AddGPCRequest;

NOW outport[IOPPort]^.ProcessorRequest <- ProcessAddGPC;

END;

ELSE

WriteString(ParamOut, "Problems encountered enabling a DIU.");

WriteLn(ParamOut);

END;

END AddDIUProcess;

PROCEDURE AddGPCProcess(VAR GrowStatus : NetworkGrowthProgressType;

Response : ChainStatusData;

VAR NodeStatus : NodeStatusArray;

MonitorChain : ChainT_pe);

VAR GPCElement : GPCSpawningRecord;

AddGPCIORequest : IORequestType;

AddGPCRequest : DataPointer;

ProcessAddGPC : ProcessingUnit;

NewStateRequest : DataPointer;

ProcessNewState : ProcessingUnit;

B-142

BEGIN

IF ChainExecutedWithoutError(Response) THEN

GPCEIJ_,ent :- FirstQ(GPCList) ;

IF GPCElement <> NIL THEN

REMOVE GPCElement FROM GPCList;

(* Update status of the node connected to the spare root

link connection to be added to the network. *)

WITH GPCEl_ment ^ DO

NodeStatus[FindNodeNu_ber(SpawuingNode)].

PortStatus[InboardPort].Status :- Active;

NodeStatus[FindNodeNumber(SpawningNod_)].

PortStatus[InboardPort].Direction :- Inboard;

AddGPCToNetwork(SpawningNode, InboardPort, NodaStatus, AddGPClORequest);

GrowStatus.SpareRootNodeAddress :- SpawningNode;

END;

DISPOSE(GPCEI_ent);

AddGPCIORequest^.Chain^.NetworkToBeExecutedOn := NetworkIDToManage;

AddGPCIOReq_est^.Identifier :- MyNodeID;

AddGPClORoquest^.ResponseExpected :- TRUE;

NEW(AddGPCRoquost);

AddGPCRequest^oMessage :- NetworkRequest;

P___dGPCRequest^.IORequest :- AddGPCIORequest;

NEW(ProcessAddGPC);

ProcessAddGPC^.Priority :- NetworkManagerPriority;

ProcessAddGPC^.ProcessingRequired :- ComputeOneTransactionChain

+ NetworkResponseComputation;

Process_dGPC^.WriteData :- FALSE;

ProcessAddGPC^.ProcessID :- 'NW Add GPC Processing';

PIocossAddGPC^.Data :- AddGPCRequest;

NOW outport[IOPPort]^.ProcessorRequest <- ProcessAddGPC;

ELSE

(* All GPCs have been added to the network. Notify the I/O Service

that my network is now operational. *)

NEW(NetworkState);

NetworkState^.NetworkID :- NetworkIDToManage;
NetworkState^.State :- InService;

NetworkState^.MonitorChain :- MonitorChain;

NEW(NewStateRequest);

NewStateRequest^.Message := NewState;

NewStateRequest^.StateData :- NetworkState;

NEW(ProcessNewState);

ProcessNewState^.Priority := NetworkManagerPriority;

ProcessNewState^.ProcessingRequired :i ChangeNetworkStatus

+ NetworkResponseComputation;
ProcessNewState^.NriteData :- FALSE;

ProcessNewState^.ProcessID :- 'Change Network State';

ProcessNewState^.Data := NewStateRequest;

NOW outportIIOPPort]^.ProcessorRequest <- ProcessNewState;

END;

ELSE

WriteString(ParamOut, "Tried to add a GPC and failed.");

8-143

WriteLn (ParamOur) ;

END;

END AddGPCProcess;

**

(* This procedure processes a network response and determines what the

next network manager action. *)

PROCEDURE ProcessNetworkResponse (Response : ChainStatusData;

Mode : Networh_lanager JobT ype;

VAR StatusOfGrowth • NetworkGrowthProgressType;

VAR StatusOfDiagnostics : DiagnosticRecordType) ;

VAR SpawningNode : SpawningNodeType;

BEGIN

IF Mode - GROWNetwork THE_

CASE StatusOfGrowth.Mode OF

GrowToRootNode :

RootNodeProcess (StatusOfGrowth.RootNodeAddress, GoodRootNodeFound,

SpawningQueue, StatusOfGrowth .Mode, StatusOfDiagnostics,

Response, NodeStatus} ;

AddRemainingNodes :

AddNodel_rocess (StatusOfGrowth, Response, StatusOfDiagnostics,

PreviousChainFailed, NodeStatus, NodeConnections) ;

AddD IUS :

AddDIUProcess IStatusOfGrowth, Response, NodeStatus) ;

AddGPCS :

AddGPCProces s (StatusOfGrowth, Response, NodeStatus,

StatusOfDiagnostics. TalkerRequest ^ .Chain) ;

DiagnosticCheck:

IF StatusOfDiagnostics.Diagnostic <> DiagnosticsComplete THEN

IF StatusOfDiagnostics.Diagnostic -DisabledTransmit THEN

Stat u sOfDiagnostics. LinkEnableSucessful :-

ChainExecutedWithoutError (Response) ;

END;

RunDiagnostic (StatusOfDiagnostics, NodeStatus,

NodeConnections) ;

ELSIF QSize(SpawningQueue) <> 0 THEN

REPORT "%d" StatusOfDiagnostics.TestNode TAGGED "Node added.";

IF NumberOfActiveNodes - 0 THEN

(* This indicates that the root node is the only

node in the network and the other nodes have

yet to be added. *)

REMOVE FIRST SpawningNode FR_ SpawningQusue;

StatusOfGrowth.SpawningNode :I SpawningNode^.Node;

StatusOfGrowth. SpawningPort := i;

DISPOSE (SpawningNode) ;

END;

8-144

NumberOfActiveNodes :-Num_erOfActiveNodes + I;

StatusOfGrowth.Mode :- AddRemainingNodes;

NextNodeToAdd (StatusOfGrow%h, NodeConnections, NodeStatus,

DIUList);

END;

END;

ELSE

CASE R_pairNetworkMode OF

DisconnectLink:

DisconnectLinkProcess(ErrorReport, Response, NodeStatus,

NodeConnections);

ReconnectLink:

ReconnectLinkProcess (ErrorReport, Response) ;

I ReconnectBranch :

ReconnectBranchProcess (ErrorReport, Response) ;

i TalkToRootFailedTree :

TalkToRootProcess(Response, BranchNode, BranchPort} ;

ELSE

WriteString(ParamOut, "DISCONNECT LINK IS THE ONLY MODE SUPPORTED");

WriteLn (ParamOur) ;

END;

END;

ReleaseChainResponseMemory (Response) ;

END ProcessNetworkResponse;

**

PROCEDURE ReleaseManagerRequest (VAR Request : IORequestType) ;

VAR Transaction : TransactionType;

ElementCounter : INTEGER;

NumberOfElements : INTEGER;

BEGIN

IF Request <> NIL THEN

WITH Request^.Chain ^ DO

NumberOfElements := QSize (TransactionQueue) ;

FOR ElementCounter :- 1 TO NumberOfElements DO

Transaction :- QRemove (TransactionQueue, TRUE) ;

DI SPOSE (Transaction ^.OutputFrame };

DISPOSE (Transaction) ;

END;

QDispose (TransactionQueue, SIZE (TransactionQueue)) ;

END;

DISPOSE (Request ^ .Chain) ;

B-145

DISPOSE (Request) ;

END;

END ReleaseM_inager Request;

**

BEGIN

IOPPort :- GetOutPort(IOPIdentifier) ;

ReadNodeI nterConnectione (Natwor k IDToManage, NodeConnections) ;

InitializeStatusVariables (NodeConnections, Nodestatus, ChannelStatus) ;

Nodes InNetwork :- NodesInThisSimulation (NodeConnections) ;

WriteLn (ParamO_t) ;

WriteLn (ParamOut) ;

DiagnosticStatus.TalkerRequest := MakeMonitorRequest [NodeConnections) ;

WITH DiagnosticStatus.TalkerRequest ^ DO

Chain^.NetworkToBeExecutedOn :- NetworkIDTo_age;

I dentifler :- MyNode ID;

ResponseExpected :- TRUE;

END;

NEW {PowerupRequest) ;

PowerupRequest ^.Message :- Powerup;

NEW (PowarupProcess ing) ;

PowerupProcessing^. Priority :- 2;

PowerupProcessinq ^.PrOcessingRequired :- FLOAT (NodesInNetwork) _ NodePoweruplnitilizeTime;

powerupProcessing ^ .WriteData :- FALSE;

PowerupProcessing ^.ProcessID :- '_ Power up' ;

PowerupProcessing ^ .Data := PowerupRequest;

NOW outport [IOPPort] ^.ProcessorRequest <- PowerupProcessing;

LOOP

WAITUNTI L (ProcessorResponse)

ProcessorResponse :

ProcessingResponse :- ActivePort ^ .ProcessorResponse;

ProcessKesponse := P roces s ingResponse^. Data;

IF ProcessResponse ^ .Message - Powerup THEN

EXIT;

ELSE

WriteString(ParamOut, "Problem during NM power up processing");

WriteLn (ParamOur) ;

END;

END;

END;

DISPOSE(ProcessingRespo_se);

DISPOSE(ProcessResponse};

PreviousChainFailed := FALSE;

NumberOfActiveNodes := 0;

(* Initailize the Node Status variable to reflect the networks

B-146

intial state. *)

FOR NodeIndex :- 1 TO NodesInNetwork DO

WITH NodeStatue[NodeIndex] DO

Address "- NodeConnections [NodeIndex] .NodeAddress;

Status :- Active;

FOR PortIndex :- 1 TO NumberOfPortsPerNode DO

IF InitialNodaConfiguration[NodeIndex) IPortIndex] THEN

PortStatus (PortIndex]. Status :- Active;

IF InitialOrientation[NodeIndex] [PortIndex] THEN

PortStatus [Portlndex] .Direction :- Inboard;

ELSE

PortStatus [PortIndex] .Direction :- Outboard;

END;

ELSE

PortStatus (PortIndex] .Status :- Idle;

_D;

END;

END;

END;

LOOP

WAITUNTIL EVENT

ServiceRequest :

RequestForService :- ActivePort ^.ServiceRequest;

CASE RequestForService^.ServiceRequest OF

GrowNetwork :

InitializeS tatusVariables (NodeConnections, NodeStatus,

ChannelStatus) ;

GoodRootNodeFound :- FALSE;

NetworkManagerStatus :- GROWNetwork;

NetworkGrowthProgress.Mode :- GrowToRootNode;

StartNetworkGrowth (RequestForService ^ .ActiveRootLink,

NetworkGrowth9 rogres s, NodeConnections, NodeStatus,

Nodes InNetwork) ;

} RepairFault :

(* This reconfiguration strategy attempts

one shot repair of the network. *)

NetworkManagerStatus :- RepairNetwork;

AnalysisPor tDecisions :- 0;

NetworkRepair (RequestFor Service ^ .MonitorChainRespons e^. Re sponse,

NodeStatus, NodeConnections, ErrorReport,

RepairNetworkMode };

I SwitchRootLink :

WITH RequestForService ^ DO

B-147

(* Get the node which is connected to the n_

root link and the node conneotld to the failed

root link. Deternine which port ot RootNode

which is connected to the NewRoot. *)

RootNode :- Fin_odeNumber (NewRootNode} ;

FailedNode :- FindNodeNumber (FailedRootNode) ;

C_rrentPort :- I;

WHILE NodeConneotions [RootNode] .PortArray[

CurrentPort] .AdjacentElement <> GPC DO

CurrentPort :- Current.Port + i;

END;

END;

(_ Update node status to reflect the root link switch. *}

UpdateNodeStatusBranchReconnect (NodeStatus IRootNode] .Address,

CurrentPort, NodeStatus (FailedNode] °Address,

NodeStatus) ;

END;

DISPOSE (RequestForService} ;

I IONetworkResponse :

NetworkResponse :- ActivePort^. IONetworkResponse;

Proces sNetworkResponse {NetworkResponse, NetworkManagerS tat us,

NetworkGrowthProqress, DiagnosticStatus) ;

(* Get rid of memory for I/O request correspond/ng to

this response. *)

RoleaseManagerRequest (LastNetworkRequest) ;

I ProcessorResponse :

ProcessingResponse :- ActivePort^.ProcessorResponse;

ProcessRosponse :- P recess ingResponse^. Dat a;

CASE ProcessResponse^.Message OF

GrowRequest, NetworkRequest, FaultAnalysis:

WITH DataCollectionRecord DO

SimulationT1me :- clock;

Frequency :- NonCyclic;

IF NetworkManagerStatus - GROWNetwork THEN

NonCyclicData.NVariation :- RegrowAction;

CASE NetworkGrowthProgress.Mode OF

GrowToRootNod_ :

Event ID :- 32;

NonCyclicData.Node DIU ID :- NetworkGrowthProgress.RootNodeAddress;

Wr i%eDat aEl ementType (DataCol lectionR_cord) ;

I AddR_mainingNodes :

Event ID :- 33;

NonCyclicData.Node DIU ID :- NetworkGrowthProgress .TargetNode;

Wr IteDataElementType (DataCollectionRecord) ;

8-148

I AddD IUS :

Event ID :- 34;

NonCyclicData.Node DIU ID :- NetworkGrowthProgress.DIUAddress;

WriteDataEle_entType(DataCollectionRecord);

[AddGPCS :

EventID :- 35;

NonCycllcData.Node DIU ID :- NetworkGrowthProgress.SpareRootNodeAddrass;

WrlteDataEl_entType(DataCollectionRecord);

ELSE

END;

ELSIF NatworkManagerStatus - RepairNetwork THEN

CASE RepairNetworkMode OF

DisconnectLink:

EventID :- 36;

NonCyclicData.NVariation :- ErrorEval;

NonCycllcData.NumberFailed :- ErrorReport.FaultAnalysisRecord.FailedNodeCount;

ErrorIndex :- I;

FOR Nodelndex :- 1 TO NodesInNetwork DO

IF NodeSetRanga(NodeIndex) IN

ErrorReport.FaultAnalysisRecord.FailedNodeSet THEN

NonCyclicData.Node_IDIErrorIndex] :- NodeConnectionsINodeIndex].NodeAddress;

INC(Errorlndex);

END;

END;

WriteDataElementType(DataCollectlonRecord);

EventID :- 37;

NonCyclicData.NVariation :- OneShotAction;

Transaction :- FirstQ(ProcessResponse^.IORequest^.Chain^.TransactionQueue);

TargetNode :- Transaction^.O_tputFrame^.Address;

Transaction :- QSucc(Transaction, ProcQssResponse^.lORequest^.Chain^.TransactionQueue

SourceNode :- I00 *Transaction^.OutputFrame^.Address;

NonCyclicData.LinkNodeID :- SourceNode + Target_Node;

I RaconnectLink:

EventID :- 38;

NonCyclicData.N_Variation :- OneShotAction;

Transaction :- FirstQ(ProcessResponse^.IORequest^.Chain^.TransactionQueue);

SourceNode :- 100 *Transaction^.OutputFrame^.Address;

Transaction :- QSucc(Transaction, ProcessResponsa^.IORequest^.Chain^.TransactionQueue

TargetNode :- TransactionA.OutputFrame^.Address;

NonCyclicData.LinkNoda_ID :- SourceNode + TargetNode;

I ReconnectBranch:

EventID :- 39;

NonCyclicData.NVariation := OneShotAction;

Transaction :- FirstQ(ProcessResponseA.IORequest^.Chain^.TransactionQ_eue);

SourceNode :- I00 *Transaction^.OutputFrame^.Address;

Transaction :- QSucc(Transaction, ProcessResponse^.IORequest^.Chain^.TransactionQueue

TargetNode :- Transaction^.OutputFrame^.Address;

NonCyclicData.LinkNodeID :- SourceNode + TargetNode;

I TalkToRootFailedTree:

B-149

EventlD :- 40;

NonCycllcData.N Variation :- OneShotAction;

Transaction :- FirstQ(ProcessResponse ^ .iOReq uest_ .Chain^ .TransactionQueue) ;

TaxgetNode :- Transaction^ •Out_utFrame ^.Address;

NonCyclicData.Link_Node ID :- TargetNode;

END;

WriteDataElementTypa (DataCollectionRecord) ;

END;

_D;

NOW outport [i]^. IONetworkReq_est <- ProcessResponse ^. IORequest;

LastNetworkRequest :- ProcessResponse ^.IORequest;

I NewState :

NOW outport [I]^ .NewNetworkState <- ProcessResponse ^.StateData;

END;

DISPOSE (ProcessingResponse) ;

DISPOSE (ProcessResponse} ;

I Reset :

(* Reset manager's view of the network. *)

(* Reinitailize the Node Status variable to reflect

the network's intial state. *)

PreviousChalnFailed :- FALSE;

NumberOfActivoNodos "- 0;

InitializeStatusVariables (NodoConnections, NodeStatus, ChannelStatus) ;

FOR NodeIndex :- I TO NodesInNetwork DO

WITH NodeStatus [NodeIndex] DO

Status :- Active;

FOR PortIndex :- 1 TO NumberOfPortsPerNode DO

IF InitialNodeConfiguration [NodeIndex] [PortIndex] THEN

PortStatus [PortIndex] .Status :- Activl;

IF InitialOrientation[NodeIndex] [PortIndex] THEN

PortStatus [PortIndex] .Direction :- Inboard;

ELSE

PortStatus [Portlndex] .Direction :- Outboard;

END;

ELSE

PortStatus[PortIndex].Status :- Idle;

END;

END;

END;

END;

END;

B-150

B-151

BLDCHAINS

B-152

DEFINITION MODULE BldChains;

FROM IOService IMPORT IORequestType;

FROM BusMessag IMPORT IOActivityChoice;

EXPORT QUALIFIED ApplicatlooType, BuildRequest;

TYPE ApplicatlonType - (FlightControl, EngineControl);

**

PROCEDURE BuildReq_est (Application : AppllcatlonType;

Rate : INTEGER;

IOActivity : IOAotivityChoice) : IORequestType;

**

END BldChains.

B-153

BLDCHAINS

B-154

IMPLemENTATION MCOULE BldChains;

FROM IOService IMPORT IOActlvityType, IC_oquestType;

FRCM lOS IMPCRT ChainType, TransactionType;

FROM BusMessag I_C_T BusMossageTypa, MeesageType, IOActivityChoice;

FROM QueuoM IMPC_T InltQ, QInsert, QSLze;

FROM Storage IMPORT ALLOCATE;

CONST FllghtControlRequestTLmeoutl00

FllghtControlRequestTimeoutS0

FILghtControlReq_estTimeout25

- 0.002;

- 0.002;

- 0.001;

EngineControlRequestTimeout100

EngineControlRequestTimeoutSO

EngineControlRequestTimeout25

0.001;

0.001;

0.001;

EnginoControlZdentlfierlO0

EngineControlIdentifier50

EngineControlldentifier25

- 100;

- 50;

- 25;

FlightControlidentifierl00

F1ightControlldentifier50

FllghtControlIdentlfler25

- i00;

- 50;

- 25;

lhletReq_estPriority

NozzlaRoquoetPriority

gnginoRequostPriorlty

- 10;

- 9;

- 8;

FastRequeatPrlority

MiddleRequastPriority

SlowP_questPriority

- I0;

- 9;

- 8;

InletDIUAddressl - 81;

NozzleDIUAd_ressl - 83;

EngineDIUAddreul - 82;

InletDIUAddrees2 - iii;

NozzleDIUAddress2 - 113;

EngineDIUAddress2 - 112;

Sensor2DIUAddressl

Cockpit2DIUAddreBsl

CanardRightDIUAddressl

LeadingEdgeRightDIUAddressl

Out_boardFlaperonRiqhtDIUAddressl

InboardFlaperonRightDIUAddressl

TrailingEdgeRightDIUAddressl

R_dderRlghtDIUAddrelsl

RudderL_ftDIUAddressl

TrailingEdgeI_ftDIUAddressl

InboardYlaperonLeftDIUAddresel

Outl_ardYlaperonLeftDIUAddressl
NoseDIUAddressl

CanardLeftDIUAddressl

Cock_itlDIUAddressl
SanaorlDIUAddressl

- 91;

- 92;

- 93;

- 94;

- 95;

- 96;

- 97;

- 98;

- 99;

- i00;

- 101;

- 102;

• - 103;

- 104;

- 105;

- 106;

Sensor2DIUAddresa2

CocEpit2DIUAddress2

CanardR/ghtDIUAddress2

LeadingEdgeRightDl_JAddress2

OutboardFlaperonRightDIUAddross2

Ir_oardFlaperonRightDIUAddress2

TrailingEdgoRightDIUAddress2

RudderRightDIUAddress2
RudderLeftDIUAddresa2

TrailingEdgeLeftDIUAddress2

InboardFlaperonLeftDIUAddress2

Ou_ardFlaperonLeftDIUAddress2

- 111;

- 112;

- 113;

- 114;

- 115;

- 116;

- 117;

- 118;

- 119;

- 120;

- 121;

- 122;

B-155

NoseDIUAddress2 - 123;

CanardLeftDIUAddress2 - 124 ;

CockpitlD IUAddress2 - 125;

SQnsor iDIUAddres s2 - 126;

(* This section controls the transaction timeouts of for transactions

in the flight control and engine application. *)

{* This section sets transaction timeouts for the engine application.

Since there is only one transaction An each of the chains,

tmeouts will be set at maximum execution t/me plus

tlme for response bits on the bus plus 10% of the previos sum. *)

InletTransactionTimeout - 0.000305; (* max 0.000277 *)

NozzleTransactionTimeout - 0.000229; (* max 0.000208 *)

EngineTransactionTimeout - 0.000637; (* max 0.000579 *)

(* This sections sets the transaction timeouts for the flight

control application. The timeouts are set such that if a

transaction times out, the succeding transaction in the chain

for the network with the failed transacton, will be

transmitted from the IOS approximately the same time as the

corresponcLtng transaction on the unfailed network. *)

Sensor2FastTransactionTimeout - 0.000208;

Sensor2MiddleTransactionTimeout

Cock_it2TransactionTimeout

CanardRightTransactionTimeout

LeadingEdgeRightTransactionTimeout

Ou_rdFlaperonRightTransactionTimeout -

InboardFlaperonRightTransactionTimeout -

TrailingEdgeRightTransactionTimeout

RudderR/ghtTransactionTimeout
RudderLeftTransactionTimeout

TrailingEdgeLeftTransactionTimeout

InboardFlaperonLeftTransactionTimeout -

OutboardFlaperonLeftTransactionTimeout -

NoseTransactionTimeout

CanardLeftTransactionTimeout

CockpitlMAddleTransactionTimeout

CockpitlSlowTransactionTimeout
SensorlFastTransactionTimeout

SensorlMiddleTransactionTimeout

SensorlSlowTransactionTimeout

0.000116;

0.000139;

0.000116;

0.000208;

0.000139;

0.000162;

0.000162;

0.000116;

0.000116;

0.000139;

0.000162;

0.000139;

0.000116;

0.000116;

0.000139;

0.000093;

0.000208;

0.000116;

0.000093;

PROCEDURE FltConl00Req_est(IOActivity : IOActivityChoice) :IORequestType;

VARFlightControll00Request

NetworklChaln

Network2Chain

Transaction

Co_=and

: IORequestType;

: ChainType;

: ChainType;

: TransactionType;

: BusMessageType;

BEGIN

(* This process controls the 100Hz I/O request. I/O Requests will

be generated at a 100Hz rate, i.e every 10ms. After the I/O

response is received, this process will delay for a time interval

Intended to represent the tame At takes to generate the next output.

NEW(FlightControll00Request);

NEW(NetworkIChain);

NEW(Network2Chain);

NetworklChain^.TransactionQueue :- InitQ("TransactionQueue", FALSE, 0};

Network2Chain^.TransactionQueue := InitQ ("TransactionQueue", FALSE, 0);

NetworklChain^.ChainIdentifier := i;

Network2Chain^.ChainIdentifier :- i;

NEW(Transaction);

NEW(Command);

WITH Command ^ DO

,)

B-156

Address :- SensorlDIUAddressl;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActivlty;

CommandNumber :- I;

END;

END;

WITH Transaction ^ DO

Identifier := 100;

TimeOutValue := SensorlFastTransactionTimeout;

OutputFrame :- Command;

END;

QInsert(Transaction, NetworklChain^.TransactionQueue, FALSE);

NEW (Transaction) ;

NEW (Command} ;

WITH Command _ DO

Address :- Sensor2DIU_dressl;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActivity;

CommandNumber := i;

END;

END;

WITH Transaction ^ DO

Identifier :- 101;

TimeOutValue := Sensor2FastTransactionTimeout;

O_tputFrame := Command;

END;

QInsert (Transaction, NetworklChaln^.TransactionQueue, FALSE) ;

N_W (Transaction) ;

NEW (Command) ;

wITH Command ^ DO

Address :- OutboardFlaperonLeftDIUAddressl;

Message := DIUInput;

WITH DIUCommand DO

Activity := IOActivity;

CommandNumber := i;

END;

END;

WITH Transaction ^ DO

Identifier :- 102;

TimeOutValue := OutboardFlaperonLeftTransactionTimeout;

OutputFrame :- CoEmand;

B-157

END;

QInsert(Transaction, NetworklChain^.TransactionQueue, FALSE);

NEW (Transaction) ;

NEW (Command) ;

WITH Cocmand ^ DO

Address :- OutboardFlaperonRightDIUAddressl;

Message :i DIUInput;

WITH DIUCommand DO

Activity :_ IOActivity;

CommandNumber :- 1 ;

END;

END;

WITH Transaction ^ DO

Identifier :- 103;

TimeOutValue :- OutboardFlaperonRightTransactionTimeout;

OutputFrame :_ Command;

END;

QInsert(Transaction, NetworklChain^.TransactionQueue, FALSE);

NEW (Transaction) ;

NEW (Command) ;

WITH Co_uLnd ^ DO

Address :- InboardFlaperonLeftDIUAddressl;

Message :- DIUInput;

WITH DIUCommand DO

Activity :3 IOActivity;

CommandNumber := i;

END;

END;

WITH Transaction ^ DO

Identifier :- 104;

TimeO_tValue :_ InboardFlaperonLeftTransactionTimeout ;

OutputFr ame := Command;

END;

QInsert(Transaction, NetworklChain^.TransactionQueue, FALSE);

NEW(Transaction) ;

NEW (Command) ;

WITH Command ^ DO

Address :_ InboardFlaperonRightDIUAddress[;

Message := DIUInput;

WITH DIUCommand DO

Activity := IOActivity;

CommandNumber := I;

END ;

B-158

(*

*)

END;

WITH Transaction ^ DO

Identifier := 105;

TimeOutValue :- InboardFlaperonRightTransactionTimeout;

OutputFrame :- Command;

END;

QInsert(Transaction, NetworklChain^.TransactionQueue, FALSE)

NEW (Transaction) ;

NEW(Comuand) ;

WITH Command ^ DO

Address :- TrailingEdgeLeftDIUAddressl;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActivity;

CommandNumber :- I;

END;

END;

WITH Transaction ^ DO

Identifier :- 106;

TimeOutValue :- TrailingEdgeLeftTransactionTimeout;

OutputFrame :- Command;

END;

QInsert(Transaction, NetworklChain^.TransactionQueue, FALSE)

NEW (Transaction) ;

NEW(Command) ;

WITH Command ^ DO

Address :- TrailingEdgeR/qhtDIUAddressl;

Message :- DIUInput;

WITH DIUCommand DO

Activity := IOActivity;

CommandNumber :- I;

END;

END;

WITH Transaction ^ DO

Identifier :- 107;

TimeOutValue := TrailingEdgeRightTransactionTimeout;

OutputFrame := Command;

END;

QInsert (Transaction, NetworklChain ^.TransactionQueue, FALSE}

INSERT Transaction LAST rN NetworkiChain^.TranactionQueue);

WITH NetworklChain ^ DO

Bo159

NetworkToBeExecutedOn :- I;

NumberOfTransactions :- QSize(NetworkIChain^.TransactionQueue);

END;

NEW(Transaction};

NEW(Command);

WITH Command ^ DO

Address :- SensorlDIUAddress2;

Message :- DIUInput;

WITH DIUCommand DO

Activity := IOActivity;

CommandNumber :- I;

END;

END;

WITH Transaction ^ DO

Identifier :- 200;

T1meOutValue :- SensorlFastTransactionTimeout;

OutputFrame :- Command;

END;

QInsert(Transaction, Network2Chain^.TransactionQueue, FALSE);

NEW(Transaction);

NEW(Command};

WITH Command ^ DO

Address :- Sensor2DIUAddress2;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActivlty;

CommandNumber := i;

END;

END;

WITH Transaction ^ DO

Identifier := 201;

TlmeOutValue :_ Sensor2FastTransactionTimeout;

OutputFrame :- Command;

END;

QInsert(Transaction, Network2Chain^°TransactionQueue, FALSE);

NEW(Transaction);

NEW(Command);

WITH Command ^ DO

Address :- OutboardFlaperonLeftDIUAddress2;

Message :- DIUInput;

WITH DIUCommand DO

Activity := IOActivlty;

CommandNumber := i;

END;

B-160

END;

WITH Transaction ^ DO

Identifier :- 202;

TimeOutValue :- OutboazdFlapercnLeftTransactionTimeout;

OutputFrame :- Command;

END;

QInsert (Transaction, Network2Cha/a ^.TransactionQueue, FALSE} ;

NEW (Transaction) ;

NEW (C_and) ;

WITH Command ^ DO

Address :- OutboardFlapeEonR/ghtDIUAddress2 ;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActivity;

C_mmandNumber :- I;

END;

END;

WITH Traamaction ^ DO

Identifier :- 203;

Ti_eOutValue :- OutboardFlaperonRightTransactionTimeout;

OutputFrame :- Command;

END;

QInsert(Transaction, Network2Chain^.Tran_actionQueue, FALSE);

NEW (Transaction) ;

NEW (command) ;

WITH Command ^ DO

Address :_ Inboard21aperonLeftDIUAddress2;

Message :- DIUInput;

WITH DIUCom_%nd DO

Activity :- IOActivity;

CommandNumber :- 1;

END;

END;

WITH Transaction ^ DO

Identifier :- 204;

TimeOutValue :- InboardFlaperonLeftTransactionTimeout;

Output.Frame :- Command;

END;

QInsert(Transaction, Network2Chain^.TransactionQueue, FALSE);

NEW (Transaction) ;

NEW (Command) ;

WITH Command ^ DO

8-161

Address :- InboardFlaperonRightDIUAddress2;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActivity;

CommandNumber :,, i;

END;

END;

WITH Transaction ^ DO

Identifier :- 205;

TimeOutValue :- InboardFlaperonR/ghtTransactionTimeout;

OutputFrame :- command;

END;

Olnsert(Transaction, NQtwork2Chain^.TransactionQueue, FALSE);

NEW(Transaction) ;

NEW (Command) ;

WITH Command ^ DO

Address :- TrailingEdgeLeftDIUAddress2;

Message :- DIUInput;

WITM DIUCommand DO

Activity :- IOActivity;

CommandNumber :- 1;

END;

END;

WITH Transaction ^ DO

Identifier :- 206;

TimeOutValue :- TrailingEdgeLeftTransactionTimeout;

OutputFrame := Command;

END;

QInsert(Transaction, Network2Chain^.TransactionQueue, FALSE);

NEW(Transaction) ;

NEW (Command) ;

WITH Command ^ DO

Address :- TrailingEdgeR/ghtDIUAddress2;

Message := DIUInput;

WITH DIUCommand DO

Activity :_ lOActivity;

Command_umber :- i;

END;

END;

WITH Transaction ^ DO

Identifier := 207;

T1meOutValue :- TrailingEdgeR/ghtTransactionTimeout;

OutputFrame :_ Command;

B-162

(*

*)

END;

QInsert(Transaction, Network2Chain^.TransactionQueue, FALSE);

INSERT Transaction LAST IN Network2ChainA.TranactionQueue);

WITH Network2Chain ^ DO

NetworkToBeExecutedOn :I 2;

NumberOfTransactions :- QSize (Network2Chain ^ .TransactionQ_eue) ;

END;

WITH FlightControll00Request ^ DO

Priority :- FastRequestPriority;

Identifier :- FlightControlIdantifierl00;;

RequestTimeoutValue :- FlightControlRequestTimeoutl00;

RequestType :- ApplicationRequest;

ChainArray_l] :- NetworklChain;

ChainArray[2] := Network2Chain;

END;

RETURN (FlightControll00Request);

END FltConl00Request;

**

PROCEDDI%E FltConSORequest{IOActivity : IOActivityChoice} :IORequestType;

VAR FlightControl50Request : IOReq_estType;

NetworklChain : ChainType;

Network2Chain : ChainType;

Transaction : TransactionType;

Command : BusMessageType;

BEGIN

(* This process controls the 50Hz I/O Request. I/O Requests will be

generated at a 50Hz rate, i.e every 10ms. After the I/O response

is received, this process will delay for a time interval Intended

to represent the time it takes to generate the next output. *)

NEW(FlightControlSORequest);

NEW(NetworklChain);

NEW{Network2Chain);

NetworklChain^.TransactionQueue :- InitQ("TransactionQueue", FALSE, 0);

Network2Chain^.TransactionQueue :- InitQ("TransactionQueue", FALSE, 0);

NetworklChain^.ChainIdentifier :- 2;

Network2Chain^.ChainIdentifier :- 2;

NEW (Transaction} ;

NEW (C_and} ;

WITH Comxnand ^ DO

Address :- SensorlDIUAddressl;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActivity;

Comman_umber :- 2;

END;

B-163

END;

WITH Transaction ^ DO

Identifier := I00;

TimeOutValue :- SensorIMiddleTransactionTimeout;

OutputFrame :- Command;

END;

QInsert(Transaction, NetworklChain^.TransactionQueue, FALSE);

NEW (Transaction) ;

NEW (Coa_and) ;

WITH Command ^ DO

Address :- Sensor2DIUAddressl;

Message :_ DIUInput;

WITH DIUCommand DO

Activity := IOActivit y;

C_mmandNumber :- 2;

END;

END;

WITH Transaction ^ DO

Identifier :- 101;

TimeOutValue :- Sensor2MiddleTransactionTimeout;

OutputFrame := Command;

END;

QInsert (Transaction, NetworklChain ^.TransactionQueue, FALSE} ;

NEW {Transact ion) ;

NEW (Command) ;

WITH Command ^ DO

Address :- CockpitlDIUAddressl;

Message :_ DIUInput;

WITH DIUCommand DO

Activity := IOActivity;

CommandNumber := 2;

END;

END;

WITH Transaction ^ DO

Identifier :- 102;

TimeOutValue :- CockpitlM/ddleTransactionTimeout;

OutputFrame :- Command;

END;

QInsert (Transaction, NetworklChain ^.TransactionQueue, FALSE) ;

NEW (Transaction) ;

NEW (Command) ;

WITH Command ^ DO

B-164

Address :- Cockpit2DIUAddressl;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActivity;

CommandNuuber :- 2 ;

END;

END;

WITH Transaction ^ DO

Identifier :- 103;

TimeO_tValue :- Cockpit2TransactionTimeout;

O_tputFrame :- C_and;

END;

QInsert (Transaction, NetworklChain ^,TransactionQueue, FALSE) ;

NEW (Transaction) ;

NEW (C_and) ;

WITH CoQuRand ^ DO

Address :- CanardLeftDIUAddressl;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActivity;

Com_andNumber :- 2;

END;

END;

WITH Transaction ^ DO

Identifier :- 104;

TimeOutValue :- CanardLeftTransactionT/meout;

OutputFrame :- Ccamand;

END;

QInsert(Transaction, NetworklChain^.TransactionQueue, FALSE);

NEW (Transaction) ;

NEW {Command) ;

WITH Command ^ DO

Address :- CanardRightDIUAddressl;

Message :- DIUInput;

WITH DIUCommand DO

Activity := lOActivity;

CommandNumb_r : = 2;

END;

END;

WITH Transaction ^ DO

Identifier :- 105;

TimeOutValue :- CanardRightTransactionTimeout;

OutputFrame :- Command;

8-165

END;

QInsert(Transaction, NetworklChain^.TransactionQ_eue, FALSE};

NEW (Transaction) ;

NEW (Cowaand) ;

WITH Command ^ DO

Address :- RudderLeftDIUAddressl;

Message :- DIUInput;

WITH DIUCommand DO

Activity := IOActivity;
CommandNumber : = 2 ;

END;

END;

WITH Transaction ^ DO

Identifier :- 106;

TimeOutValue :- RudderLeftTransactionTimeout;

Output_Frame :- Command;

END;

QInsert(Transaction, NetworklChain^.TransactionQueue, FALSE);

NEW (Transaction) ;

NEW (Command) ;

WITH Command ^ DO

Address :- RudderRightDIUkddressl;

Message :- DIUInput;

WITH DIUCommand DO

Activity := IOActivity;

CommandNumber :- 2 ;

END;

END;

WITH Transaction ^ DO

Identifier := 107;

TimeOutValue :- RudderRightTransactionTimeout;

OutputFrame :- Command;

END;

QInsert(Transaction, NetworklChain^.TransactionQueue, FALSE};

NEW (Transaction) ;

NEW (Co_and) ;

WITH Command ^ DO

Address :- NoseDIUAddressl;

Message :- DIUInput;

WITH DIUCommand DO

Activity := IOActivity;

CommandNumber := 2;

END;

_166

(*

*)

END;

WITH Transaction ^ DO

Identifier := 108;

TimeOutValue :- NoseTransactionTimeout;

O_tputFra_e :- Command;

END;

QInaert (Transaction, NetworklChain ^.Transactlonouaue, FALSE) ;

NEW (Tranaaction) ;

_EW(C_mmd) ;

WITH Ccamaad ^ DO

Address :- Lead/ngEdqeRiqhtDIUAddressl;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActivit y;

C_mmdNuaber :- 2;

END;

END;

WITH Transaction ^ DO

Identifier :- 109;

TimeOutValue :- LeadingEdgel%ightTranaactlonTimeout;

OutputFrame :- Command;

END;

QInsert (Transaction, NetworklChain ^.TransactionQueue, FALSE) ;

INSERT Transaction LAST IN NetworklChain*.TranactionQueue);

WITH NetworklChain ^ DO

NetworkToBeExecutedOn :- I;

NumberOfTransactions := QSize (NetworklChain ^ .TransactionQueue) ;

END;

NEW (Transaction} ;

NEW (Connuand) ;

WITH Command ^ DO

Address :- SensorlDIUAddress2;

Message := DIUInput;

WITH DIUCommand DO

Activity :- IOActivity;

Comu_a_dNumber :- 2;

END;

END;

WITH Transaction ^ DO

Identifier := 200;

TimeOutValue :- SensorlMiddleTranaactionTimeout;

OutputFrame :- Command;

B-167

END;

Qlnsert (Transaction, Network2Chain ^.TransactionQuaue, FALSE) ;

NEW (Transaction) ;

NEW (C_mand) ;

WITH Command ^ DO

Address :- Sensor2DIUAddress2;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActivity;

CommandNumber :- 2;

END;

END;

WITH Transaction ^ DO

Identifier :- 201;

TimeOutValue :- Ssnsor2MiddleTransactionTimeout;

OutputFrame :- Command;

END;

QInsert (Transaction, Network2Chain ^.TransactionQueue, FALSE) ;

NEW (Transaction) ;

NEW (Co_mand) ;

WITH Command ^ DO

Address :- CockpitlDIUAddress2;

Message :- DIUInput;

WITH DIUCo_and DO

Activity :- IOActivity;

CommandNumber :- 2 ;

END;

END;

WITH Transaction ^ DO

Identifier :- 202;

TimeOutValue :- cockpitlMiddleTransactionTimeout;

OutputFrame := Command;

END;

QInsert (Transaction, Network2Chain ^.TransactionQueue, FALSE) ;

NEW (Transaction) ;

NEW (Command) ;

WITH Command ^ DO

Address :- Cockpit2DIUAddress2;

Message :- DIUInput;

WITH DIUCommand DO

Activity := IOActivity;

CommandNumber := 2;

B-168

END;

END;

WITH Transaction ^ DO

Identifier :- 203;

TimeOutValue :- Cockpit2TransactionTimeout;

OutputFrame :- Command;

END;

QInsert (Transaction, Network2Chain ^.TranSactionQueue, FALSE) ;

NEW (Transact ion) ;

NEW (Coemand) ;

WITH C_mmand ^ DO

Address :- CanardLeftDIUAddress2;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActivity;
ComumdNumber :- 2;

E_;

END;

WITH Transaction ^ DO

Identifier :- 204;

TimeOutValue :- CanardLeftTransactionTimeout;

Output.Frame :- C_a_d;

END;

QInsert(Transaction, Network2Chain^.TransactionQueu e, FALSE);

NEW (Transaction) ;

NEW (Command) ;

WITH Command ^ DO

Address :- CanarctRightDIUAddress2 ;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActivity;

CommandNumber :- 2;

END;

END;

WITH Transaction ^ DO

Identifier := 205;

TimeOutValue :- CanardRightTransactionTimeout;

OutputFrame :- Command;

END;

QInsert (Transaction, Network2Chain ^.TransactionQueue, FALSE) ;

NEW (Transaction} ;

NEW (Comand) ;

WITH Command ^ DO

8-169

Ad(ires$:- RudderLeftDIUAddress2;

Message :- DIUInput;

WITH DIUCommand DO

Activity := IOActivity;

CommandNumber := 2;

END;

END;

WITH Transaction ^ DO

Identifier :- 206;

TimeOutValue := RudderLeftTransactionTimeout;

OutputFrame :- Command;

END;

OInsert(Transaction, Network2Chain^.TransactionQn_eue, FALSE);

NEW(Transaction) ;

NEW (Command) ;

WITH Command ^ DO

Address :- RudderRightDIUAddress2 ;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActivity;

CommandNumber :- 2;

END;

END;

WITH Transaction ^ DO

Identifier :- 207;

TlmeOutValue :- RudderRightTransactionTimeout;

OutputFram_ := Command;

END;

QInsert(Transaction, Network2Chain^.TransactionQueue, FALSE);

NEW (Transaction) ;

NEW (Command) ;

WITH Command ^ DO

Address :- NoseDIUAddress2;

Message :- DIUInput;

WITH DIUCommand DO

Activity := IOActivity;

CcamandNtunber := 2;

END;

END;

WITH Transaction ^ DO

Identifier := 208;

TimeOutValue := NoseTransactionTimeout;

OutputFrame := Command;

B-170

(*

*)

END;

QInsert(Transaction, Network2Chain^.TransactionQueue, FALSE);

NEW (Transaction) ;

NEW (Command);

WITH Command ^ DO

Address :- Lead/ngEdgeR/ghtDIUAddrass2;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActlvit y;

CommandNumber :- 2;

END;

END;

WITH Transaction ^ DO

Identifier :- 209;

TimeO_tValue "- LeadingEdgeRightTransactionTimeout;

OutputFrame :- Command;

END;

QInsert(Transaction, Network2Chain^.TransactionQueue, FALSE};

INSERT Transaction LAST IN Network2Chain ^.TranactionQueue} ;

WITH Network2Chain ^ DO

NetworkToBsExecutedOn :- 2;

NumberOfTransactions •- QSize (Network2Chain ^ .TransactionQ_eue) ;

END;

WITH FlightControl50Request ^ DO

Priority :- MiddleReques t Priority;

Identifier :- FlightControl Identifier 50 ;

RequestTimeoutValue :- FlightControlRequestTimeout50;

RequestType :- ApplicationReques t;

ChainArray I 1] := NetworklChain;

ChainArray [2] :- Network2Chain;

END;

RETURN (FlightControl50Request) ;

END FltConSOReq_est;

**

PROCEDURE FltCon25Request (IOActivity : IOActivityChoice) :IORequestType;

VAR FlightContro125Request : IOReq_estType;

NetworklChain : ChainType;

Network2Chain : ChainType;

Transaction : TransactionType ;

Command : BusMessageType;

BEGIN

(* This process controls the 25Hz I/O Request. I/O Requests will be

B-171

generated at a 25Hz rate, i.e every 40ms, After the I/O response

is received, this process will delay for a time interval intended

to represent the time it takes to generate the next output. *)

NEW (FlightControl25Request) ;

NEW (NetworklChain) ;

NEW (Network2chain) ;

NetworklChain^.TransactionQueue :-InitQ("TransactionQueue", FALSE, 0);

Network2Chain ^.TransactionQueue :- InitQ("TransactionQueue", FALSE, 0) ;

NetworklChain ^ .ChainIdentifier :- 3;

Network2Chain ^ .ChainIdentifier :- 3;

NEW (Transaction) ;

NEW (Command) ;

WITH Command ^ DO

Address :- SensorlDIUAddressl;

Message :I DIUInput;

WITH DIUCommand DO

Activity := IOActivity;

CommandNumber := 3;

END;

END;

WITH Transaction ^ DO

Identifier :- I00;

TimeOutValue :- SensorlSlowTransactionTimeout;

Output.Frame :- Command;

END;

QInsert(Transaction, NetworkiChain^.TransactionQueue, FALSE};

NEW (Transaction) ;

NEW (Command) ;

WITH Command ^ DO

Address := CockpitlDIUAddressl ;

Message := DIUInput;

WITH DIUCommand DO

Activity :- IOActivity;

CommandNumber := 3;

END;

END;

WITH Transaction ^ DO

Identifier :- i01;

TimeOutValue := CockpitlSlowTransactionTimeout;

OutputFrame := Command;

END;

QInsert (Transaction, NetworklChaln ^.TransactionQueue, FALSE) ;

WITH NetworkiChain ^ DO

NetworkToBeExecutedOn := i;

NumberOfTransactions := QSize (NetworklChain ^.TransactiOnQueue) ;

END;

B-172

NEW (Transaction } ;

NEW (C_mand) ;

WITH Coa_and ^ DO

Address :- SensorlDIUAddress2;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActivity;

CaamandNumber :- 3;

END;

END;

WITH Transaction ^ DO

Identifier :- 200;

TimeOutValue :- SensorlSlowTransactionTimeout;

OutputFrame :- Coamand;

END;

QInsert (Transaction, Network2Chain ^.TransactionQueue, FALSE) ;

NEW (Transaction) ;

NEW (C_mand) ;

WITH Command ^ DO

Address :- Cockl_itlDIUAddress2 ;

Message :- DIUInput;

_ITH DIUCommand DO

Activity :- IOActivity;

CommandNumbar :- 3;

END;

END;

WITH Transaction ^ DO

Identifier :- 201;

TimeC_tValue :- CockpitlSlowTransactionTimeout;

OutputFrame :- Command;

END;

QInsert(Transaction, Network2Chai_^.TransactionQueue, FALSE)_

WITH Network2Chain ^ DO

NetworkToBeExecutedOn :- 2;

NumberOfTransactions :_ QSize (Network2Chain ^ .TransactionQueue) ;

END;

WITH FlightContro125Request ^ DO

Priority :- SlowRequestPriority;

Identifier :- FlightCont rol Ident if ier 25;

RequestTimeoutValue :- FlightControlRequestTimeout25;

RequestType :- ApplicationReques t;

ChainArray [I] :- NetworklChain;

ChainArray [2] :- Network2Chain;

END;

B-173

RETURN (FlightContro125Request) ;

END FltCon25R_est;

**

PROCEDURE Enginel0QRequest (IOActivity : IOActivityChoice) :IOReq_estType;

VAR EngineControll00Request : IORequestType;

Network iChain : ChainType;

Network2Chain • ChainType;

Transaction : TransactionType;

Command • BusMessageType;

BEGIN

(* This process controls the inlet, which is designated as DIU address

81 on network 1 and DIU address 91 on network 2. I/O Requests will

be generated at a 100Hz rate, i.e every 10ma. After the I/O

response is received, his process will delay for a time interval

intended to represent the time it takes to generate the next output.

(* Initialize the Inlet Chain which has three actuator writes

and six sensor reads. *)

NEW (EngineControll00Request) ;

NEW (NetworklChain) ;

NEW (Network2Chain) ;

NetworklChain ^ .TransactionQueue :- InitQ ("TransactionQueue", FALSE, 0} ;

Network2Chain^.TransactionQueue "-InitQ("TransactionQueue", FALSE, 0};

NetworklChain ^.Chainlden rifler :- i;

Network2 Chain^. ChainIdentifier :- i;

NEW (Transaction) ;

NEW(Command) ;

WITH Command ^ DO

Address :- InletDIUAddressl;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActivity;

CommandNumber :- i;

END;

END;

WITH Transaction ^ DO

Identifier :- I00;

TimeOutValue :_ InletTransactionTimeout;

0utputFrame :- Command;

END;

QInsert(Transaction, NetworklChain^.TransactionQueue, FALSE);

WITH NetworklChain ^ DO

NetworkToBeExecutedOn :_ i;

NumberOfTransactions := QSize (NetworklChain ^ .TransactionQueue) ;

END;

NEW (Transaction) ;

NEW(Command) ;

WITH Command ^ DO

Address := InletDIUAddress2 ;

Message :z DIUInput;

*)

B-174

WITH DIUCommand DO

Activity :- IOActivity;

CommandNumber :- i;

END;

END;

WITH Transaction ^ DO

Identifier := 200;

TimeOutValue :- InletTransactionTimeout;

OutputFrame :- Command;

END;

QInsert(Transaction, Network2ChainA.TransactionQueue, FALSE);

WITH Network2Chain ^ DO

NetworkToBeExecutedO'n := 2;

NumberOfTransactions :- QSize (Network2Chain ^ .TransactionQueue };

END;

WITH EngineControll00Request ^ DO

Priority :- InletReque stP riority;

Identifier :- EngineControlIdentifier100; ;

ReqUestType :- ApplicationRequest;

RequestTimeoutValue :- EngineControlRequestTimeoutl00;

RequestType :- ApplicationReques t;

ChainArray [l] := NetworklChain;

ChainArray [2] :- Network2Chain;

END;

RETURN (EngineControll00Request) ;

END Enginel 00Request;

**

PROCEDURE EngineSORequest (IOActivity : IOActivityChoice) :IORequestType;

VAR EngineControlSORequest : IORequestType;

NetworklChain : ChainType;

Network2Chain : ChainType;

Transaction : TransactionType;

Command : BusMessageType;

BEGIN

(* This process controls the inlet, which is designated as DIU address

82 on network i and DIU address 92 on network 2. I/O Requests will

be generated at a 50Hz rate, i.e every 10ms. After the I/0 response

is received, this process will delay for a t/me interval intended to

represent the time it takes to generate the next output. *)

(* Initialize the Nozzle Chain which has three actuator writes

and six sensor reads, t)

NEW (EngineControlSORequest) ;

NEW (NetworkIChain) ;

NEW (Network2Chain) ;

NetworklChain^.TransactionQueue :-InitQ("TransactionQ_eue", FALSE, 0);

Network2Chain ^ .TransactionQueue :- InitQ("TransactionQueue", FALSE, 0) ;

NetworklChain^ 0ChainIden tif ier := 2;

Netwo rk2 Cha in^. Chain Identifier :- 2;

8-175

NEW {Transactlon) ;

NEW (Command) ;

WITH C0_mmand ^ DO

Address :- NozzleDIUAddressl;

Message :- DIUInput;

WITH DIUCommand DO

Activity := IOActivity;

CommandNumber := 2;

END;

END;

WITH Transaction ^ DO

Identifier := i00;

TimeOutValue := NozzleTransactionTimeout;

OutputFrame := Command;

END;

QInsert(Transaction, NetworkiChain^.TransactionQueue, FALSE);

WITH NetworklChain ^ DO

NetworkToBeExecutedOn :- I;

Nxu_berOfTransactions :- QSize(NetworklChain^.TransactionQ_eue) ;

END;

NEW (Transaction) ;

NEW (Command) ;

WITH Command ^ DO

Address :- NozzleDIUAddress2;

Message :- DIUInput;

WITH DIUCommand DO

Activity := IOActivity;

CommandNumber :- 2 ;

END;

END;

WITH Transaction ^ DO

Identifier :- 200;

TimeO_tValue := NozzleTransactionTimeout;

OutputFrame := Command;

END;

QInsert(Transaction, Network2Chain^.TransactionQueue, FALSE);

WITH Network2Chain ^ DO

NetworkToBeExecutedOn := 2;

NumberOfTransactions := QSize (Network2Chain ^ .TransactionQueue) ;

END;

WITH EngineControl50Request ^ DO

Priority :- Nozz leRequestPriorit y;

Identifier := EngineControl Identifier 50;

RequestType := ApplicationRequest;

RequestTlmeoutValue := EngineControlRequestTimeout50;

8-176

ChainArray[l] :- NetworklChain;

ChainArray[2] :- Network2Chain;

END;

RETURN (EngineControl50Request};

END EngineSORequest;

**

PROCEDURE Engine25Req_est(IOActivity : IOActivityChoice) :IORaquestType;

VAR EngineContro125Request

NetworkiChain

Network2Chain

Transaction

Command

BEGIN

: IORequestType;

: ChaulnType;

: ChainType;

: TransactionType;

: BusMessageType;

(* This process controls the inlet, which is designated as DIU address

83 on network i and DIU address 93 on network 2. I/O Requests will

be generated at a 25Hz rate, i.e every 10ms. After the I/O response

is received, this process will delay for a time interval intended to

represent the time it takes to generate the next output. *)

(* Initialize the Engine Chain which has three actuator writes

and six sensor reads. *)

NEW(EngineContro125Request);

NEW(NetworklChain);

NEW(Network2Chain);

NetworklChain^.TransactionQueue :- InitQ("TransactionQueue", FALSE, 0);

Network2Chain^.TransactionQueue :- InitQ("TransactionQueue", FALSE, 0);

NetworklChain^.ChainIdentifier :- 3;

Network2Chain^.Chainldentifier :- 3;

NEW(Transaction};

NEW(C_and);

WITH Command ^ DO

Address :- EngineDIUAddressl;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActivity;

Comman4_umber :- 3;

END;

END;

WITH Transaction ^ DO

Identifier := i00;

TimeOutValue := EngineTransactionTimeout;

OutputFrame :- Command;

END;

QInsert(Transaction, NetworklChain^.TransactionQueue, FALSE);

WITH NetworklChain ^ DO

NetworkToBeExecutedOn :- I;

NumberOfTransactions :- QSize(NetworklChain^.TransactionQueue);

END;

NEW(Transaction);

8-177

NEW (Comand) ;

WITH Command ^ DO

Address :- EngineDIUAddress2;

Message :- DIUInput;

WITH DIUCommand DO

Activity :- IOActivity;

CommandNumber :- 3;

END;

END;

WITH Transaction ^ DO

Identifier := 200;

TimeOutValue := EngineTransactionTimeout ;

OutputFrame := Command;

END;

QInsert(Transaction, Network2Chain^.TransactionQueue, FALSE);

WITH Network2Chain ^ DO

NetworkToBeExecutedOn :- 2;

NuMberOfTransactions :- QSize (NetworklChain ^ .TransactionQueue) ;

END;

WITH EngineContro125Request ^ DO

Priority :- EngineRequestP rio r ity;

Identifier := EngineControlIdentifier 25;

Req_estType :- ApplicationReques t;

RequestTimeoutValue := EngineControlRequestTimeout25;

RequestType := ApplicationReql/es t;

ChainArray [1] :- Network 1Chain;

ChainArray [2] := Network2Chain;

END;

RETURN (EngineContro125Request) ;

END Engine25Request;

**

PROCEDURE BuildRequest (Application : ApplicationType;

Rate : INTEGER;

IOActivity : IOActivityChoice) :IORequestType;

VAR Request : IORequestType;

BEGIN

CASE Application OF

FlightControl :

CASE Rate OF

i00:

Request := FltConl00Request (IOActivity) ;

I 50:

Request := FltCon50Request(IOActivity) ;

B-178

[25:

Request :- FltCon25Request (IOActivity) ;

END;

I EnqineControl:

CASE Rate OF

i00:

Request :- E_ginel00Request (IOActivity] ;

I 50:

Request :- F_glneSORequest (IOActivity) ;

I 25:

Request :- Engine25Request (IOActivity} ;

E_;

END;

Request ^ .ResponseExpected :- NOT (IOActivity - Output);

RETm_ (Request) ;

END BuildRequest;

**

END BldChains.

8-179

APPLICATN

B-180

DEVM Applicatn;

FRCM IOService REACH IORiquestType*, IORlsponseType*, ChainStatusType,

Re leas eChainRi sponseMemory;

FRCM Processor REACH ProcessingUnit*;

FRCI_ BusMessag IMPORT IOActivityChoice;

FROM BldChains IMPORT ApplicationType, BuildRequest;

FROM Senddata IMPORT WriteDataElimintType, CyclicDataType, DataElementType,

CyclicVariationType, FrequencyType;

INPUTS

EVENT

ReuponseApplication : IOResponsoType;

ProcessorResponse : ProcessingUnit;

Reeet : BOOLEAN;

PARA

CPID : INTEGER;

IOServiceID : INTEGER;

ProcessingTimeMean : REAL;

ProcessingTimeSigma : REAL;

EngineApplication : BOOLEAN;

OnDemand : BOOLEAN;

GroupidIOActivity : BOOLEAN;

ApplicationPriority : INTEGER;

IORequestInterval : REAL;

InitialOffset : REAL;

ApplicationIdentifier : INTEGZR;

END;

OUTPUTS

VAR

RiquestApplication : IORiquestType;

ProcessorRequest : ProcessingUnit;

END;

EVENT

CurrentFrame : INTEGER;

CONST

FrameStartUpTime - 0.000020;

VAR

ApplicationResponse : IOResponseType;

ApplicationRequest : IORequestType;

ApplicationlnputRequest : IORequestType;

ApplicationOutputRequest : IORequestType;

PartialData : BOOLEAN;

ProcessingRequest : ProcessingUnit;

CPResponseData : ProcessingUnit;

TempRequest : IORequestType;
CPPort : INTEGER;

IOServicePort : INTEGER;

OutputDataElement : DataElementType;

TherelsAFrameExecuting : BOOLEAN;

PROCEDURE CommunicationFaults(Response : IOResponseType) :BOOLEAN;

BEGIN

WITH Response ^ DO

RETURN (ChainStatus{l] <> NoFaults) OR (ChainStatus{2] <> NoFaults);

B-181

PROCEDURE VerifyCorrectResponse (Response : IOResponseType} ;

BEGIN

IF GroupedIOActivity THEN

IF (Response ^ .Identifier <> ApplicationRequest ^ .Identifier) OR

(QSize (Response ^ .ResponseArray |I] ^. InputFra_eue) <>

ApplicationRequest ^ •Chain ^ .N_mberOfTransactions} OR

(QSize {Response ^ .ResponseArray [2]^. InputFrameQueue) <>

ApplicationRequest ^.Chain ^ .NumberOfTransactions) THEN

WriteString(ParamOut, "Unexpected response received from the IO System");
WriteLn (ParamOut) ;

HALT;

END;

ELSIF (Response ^.Identifier <> ApplicatloninputRequest ^.Identifier) OR

(QSize (Response ^ •ResponseArray [1]^. InputFrameQueue) <>

Applicat i°n InputReques t ^ •Chain ^ •NumberOfTransactions) OR

(OSize (Response ^ .ResponseArray [2]^. InputFrameQueue} <>

Applicat ion InputRequest ^ •Chain^ .NumberOfTransactions) THEN

WriteString(ParamOut, "Unexpected response received from the IO System");
WriteLn (ParemOut) ;

HALT;

END;

END VerifyCorrectResponse;

**

BEGIN

CPPort :- GetOutPort(CPID) ;

IOServicePort :- GetOutPort (IOServiceID) ;

ThereIsAFrameExecuting :- FALSE;

IF GroupedIOActivity OR NOT OnDemand THEN (* Scheduled IO must use GroupedIO *)

IF EngineApplication THEN

ApplicationRequest := BuildRequest(EngineControl, ApplicationIdentifier, Grouped);
ELSE

ApplicationRequest :-BuildRequest(F1ightControl, ApplicationIdentifier, Grouped);
END;

IF ApplicationIdentifier - i00 THEN

ApplicationRequest ^.ChainArray [I] ^.ChainIdentifier :- 1;

ApplicationRequest ^.ChainArray[2] ^.ChainIdentifier :- I;

ELSIF ApplicationIdentifier - 50 THEN

ApplicationRequest ^ .ChainArray [I]^.ChainIdentifier :- 2 ;

ApplicationRequest ^ .ChainArray [2]^.ChainIdentifier :- 2;

ELSIF ApplicationIdentifier = 25 THEN

ApplicationRequest ^ .ChainArray [1]^.ChainIdentifier :- 3;

ApplicationRequest ^ .ChainArray [2]̂ . ChainIdentifier :- 3;

END;

B-182

ApplicationRequest^.OnDemand :- OnDemand;

ELSE (* separated IO Activity *}

IF EngineApplication THEN

ApplicationInputRequest :- BuildRequest (EngineControl, Applicationldentifier, Input) ;

AppllcationOutputRequest :- BuildRequest (EngineControl, Applicationldentifier, Output) ;
ELSE

ApplicationInputRequest :-BuildRequest(FlightControl, AppllcationIdentifier, Input};

ApplicationOutputRequest :- BuildRoquest (FlightControl, ApplicationIdentifier, Output} ;
END;

IF AppllcationIdentifiar - i00 THEN

AppllcatlonInputReq_est^.ChainArray[1]^.Cha/nIdentifier :- 5;

ApplicatlonInputRequest^.ChaiD_Krray[2]^.ChainIdeutifier :- 5;

ApplicationoutputRequest^.ChainArrayIl]^.ChainIdentifiar :- 9;

ApplicationOutputRequest^.ChainArray[2]^.ChainIdentifier :- 9;

ELSIF ApplicationIdantifier - 50 THEN

ApplicationInputRequest^.ChainArray[l]^.Chainldentifier :- 6;

ApplicationlnputRequest^.ChainArray[2]^.ChainIdentifier :- 6;

ApplicationO_t_utRequestA.ChainArray[1]^.ChainIdentifier :- i0;

ApplicationOutputRequest^.ChainArray[2]^.ChainIdentifier :- i0;

ELSIF ApplicationIdentifier - 25 THEN

ApplicationInputRequest^.ChainArrayI1]^.Chalnldentifier :- 7;

ApplicationInputRequest^.ChalnArrayI2]^.ChainIdentifier :- 7;

ApplicationOutputRequest^.ChainArray|l]^.ChainIdentifier :- 11;

ApplicationOutputRequest^.ChalnArrayI2]^.ChainIdentifier :- 11;

END;

ApplicationlnputRequest^.OnDemand :- OnDemand;

AppliaationOutpuCRequest^.OnDemand :- OnDemand;

END;

LOOP

WAITUNTIL EVENT

CurrentFrame:

AFTER IORequestInterval CurrentFrame <- CurrentFrame + I;

IF OnDemand THEN

IF ThereIsAFrameExecuting THEN

REPORT "%d" CurrentFrame TAGGED "frame overrun at frame number";

ELSE

NEW(ProcessingReqUest);

ProcessingRequest^.Priority :- ApplicationPriority;

ProcessingRequest^.ProcessID :- "FrameStartup";

ProcessingRequest^.Frame :- CurrentFrame;

ProcessingRequest^.ProcessingRequired :_ FrameStartUpTime;

ProcessingRequest^.ProcssngAfterBlock :- Normal(l, ProcessinqTimeMean, ProcessingTimeSigma);
ProcessingRequest^.WriteData :- TRUE;

IF GroupedIOActivity THEN

ProcessingReq_est^.Data :- ApplicationRequest;

ELSE

ProcessingReq_est^.Data :- ApplicationInputRequest;

B-183

END;

NOW outport[CPPort] ^.ProcessorRequest <- ProoessingRequest;

ThereIsAFrameExecuting :- TRUE;

END;

ELSE {* scheduled IO *)

ApplicationRequest^.Frame :- CurrentFrame;

ApplioationRequest ^ .ChainArray [13 ^ .FrameCount :- CurEsntFraaa;

ApplicationRequest ^ .ChainArray 12]^.FrameCount :- CurrentFrame;

NOW outport[IOServicePort]^.RequestApplication <- ApplicationRequest;

END;

J ResponseApplication :

ApplicationResponse := ActivePort^.ResponseApplication;

(* Schedule use of the processor. *)
IF OnDemand THEN

ProcessingRequest^.ProcessingRequired :- ProcessingRequest^.ProcssngAfterBlock;

ProcessingRequestA.WriteData :- FALSE;

ProcessingRequest^.ProcessID := "Response Processing";

NOW outport[CPPort]^.ProcessorRequest <- ProcsssingRequest;

ELSE (* scheduled IO *)

rF ThereIsAFrameExecuting THEN

REPORT "%d" CurrentFrame TAGGED "frame ovQrrun at frame number";

OutputDataElement.CyclicData.FrameOverrun :- TRUE;

ELSE

NEW (Process ingReques t);

Proces s ingReq_est ^.Priorit y := ApplicaticnPriorit y;

Process ingRequest ^.Frame :i Applicat ionResponse ^. Frame;

ProcessingRequest^.ProcessingRequired := Normal(i, ProcessingT/meMean, ProcessingTimeSigma};

ProcessingRequest ^.ProcssngAfterBlock :- 0.0;

ProcessingRequest ^ .WriteData :- TRUE;

ProcessingRequest ^.ProcessID :I "Response Processing";

NOW outportICPPort] ^.ProcessorRequest <- ProcessingRequest;

ThereIsAFrameExecuting := TRUE;

OutputDataElement .CyclicData.FrameOverrun :- FALSE;

END;

END;

PartialData := CommunicationFaults (ApplicationResponse) ;

IF NOT PartialData THEN

VerifyCorrectResponse (ApplicationResponse) ;

END;

(* Dispose of the memory in the Application Response. *)

IF ApplicationRespon&e ^ ._esponseArrayIl] <> _IL THEN

Re_aseChainResponseMemory IApplicationResponse ^ .ResponseArray [iI) ;

END;

8-184

IF ApplicationResponse^.ResponseArray[2] <> NIL THEN

ReleaseChainRespons eMemory (ApplicationResponse ^ .ResponseArray 12]);

END;

DISPOSE(ApplicationResponse);

ProcessorResponse:

C_ResponseData :- ActivePort^.ProcessorResponse;

IF OnDemand THEN

IF CPResponsQData^,WritoData THEN

TempRequest :- CPResponseData^.Data;

TampRequest^.Frame :- CPResponseData^.Frame;

T_Request^.Chair_Array[l]^.FrameCount :- CPResponseData^.Frame;

TempRequest^.ChaJltArray[2]A.FrameCount :- CPResponseData^.Frame;

NOW outport[IOServicePort]^.RequestApplication <- TempReq_est;

ELSE

CASE ApplicationIdentifier OF

I00 : OutputDataElement.EventID :- 4;

I 50: O_tputDataElement.EventID :-5;

I 25: OutputDataElement.EventID :- 6;

END;

O_tputDataElement. SimulationTime :- clock;

OutputDataElement.Frequency :_ Cyclic;

OutputDataElement.CycllcData.FrameCount :- CPResponseData^.Frame;

O_tputDataElement.CycllcData.CVariation :- EndComputing;

OutputDataElement.CycllcData.PartialDataUsedThisFrame :- PartialData;

OutputDataEl_ent.CyclicData.FrameOverrun :- CPResponseData^,Frame <> CurrentFrame;

OutputDataElement. CyclicData.ProcessingNotCompleted :- 0.0;

WriteDataElementType (OutputDataElement);

ThereIsAFrameExecuting :- FALSE;

IF (NOT GroupedIOActivity) AND

(ApplicationOutputRequestA.Chain^.NumberOfTransactions <> 0) THEN

kpplicationO_tputRequestA.Frame :- CPResponseData^.Frame;

ApplicationOutputRequest^.ChainArray[1]^.FrameCount :- CPResponseData^.Frame;

ApplicationOutputRequest^.ChainArray[2]^.FrameCount := CPResponseOata^.Frame;

NOW outport[IOServicePort]^.RequestApplication <- ApplicationOutputRequest;

END;

DISPOSE (CPResponseData) ;

END;

ELSE (* scheduled IO *)

CASE ApplicationIdentifier OF

100: OutputDataElement.EventID := 4;

50: OutputDataElement.EventID := 5;

J 25: OutputDataElement.EventID :- 6;

END;

OutputDataElement.SimulationTime :- clock;

OutputDataElement,Frequency := Cyclic ;

OutputDataElement .CyclicData.FrameCount := CPResponseData ^ ,Frame;

OutputDataElement.CyclicData.CVariation :- EndComputing;

OutputDataElement,CyclicData,PartialDataUsedThisFrame :- PartialData;

OutputDataElement .CyclicData.ProcessingNotCompleted := 0.0;

WriteDataElementType (OutputDataElement) ;

ThereIsAFrameExecutlng :- FALSE;

DISPOSE(CPResponseData);

B-185

END;

J Reset :

ThereIsAFrameExecuting :. FALSE;

REPORT "%12.8f" clock TAGGED "Application started at ";

AFTER InitialOffset CurrentFrame <- i;

END;

END;

END _plicatn.

B-186

CONTROLS

B-187

DEFINITION DEVM Controls;

EXPORT Syste_Probe, NumberOfProbes;

CONST

NumberOfProbes - 4;

VAR

SystemProbe : ARRAy [i .. NumberOfProbes] OF AProbe;

END Controls.

8-188

CONTROLS

B-189

DEVMControls;

FROM Senddata IMPORT StartCollectingData, FlushDataStructure, EndCollectingData,

WriteDataElementType, DataElementType, NonCyclicV&rlationType,

FrequencyType;

FROM BusMessag IMPORT NumberOfNodes;

FROM Math IMPORT RealMod;

FROM Util IMPORT GetSeedValue, SetSeedValue;

FROM NodeM IMPORT RemoveArc, RestoreArc;

FROM Conversions IMPORT RealToDFloat;

INPUTS

EVENT

NetworkReady : BOOLEAN;

PARA

ApplicationID

IOSID

NetworklNodes

Network2Nodes

IOServiceID

NetworkManaqer2 ID

CPID

IOPID

Experiment Info
Star tRunNumbor

EndRunNumber

UseI nltialSeed

Init ialSeed

SimulationLength
LinkFaults

Sour ceFaultNode

Des tFau itNode

Star tCPFDIRTime

Star tIOPFD IRTime

SystemReportLevel

: ARRAY [i .. 3] OF INTEGER;

: ARRAY [I .. 6] OF INTEGER;

: ARRAY il .. NumberOfNodes] OF INTEGER;

: ARRAY [I .. NumbarOfNodos] OF INTEGER;

: INTEGER;

: INTEGER;

: INTEGER;

: INTEGER;

: ARRAY [i .. 4] OF INTEGER;

: INTEGER;

: INTEGER;

: BOOLEAN;

: INTEGER;

: REAL;

: BOOLEAN;

: INTEGER;

: INTEGER;

: REAL;

: REAL;

: INTEGER;

END;

OUTPUTS

VAR

ResetComnand : BOOLEAN;

SubmitSystem : BOOLEAN;

ResetProbeCommand : BOOLEAN;

END;

EVENT

Restart : INTEGER;

Insert.Fault : BOOLEAN;

StopSimulation : BOOLEAN;

StopProbe : BOOLEAN;

CONST

MaJorFrameLength - 0.040;

SecondMajorFrame - 0,050;

VAR

ApplicationPort
IOSPort

IOServicePort

NetworkManager2Port
IOPPort

CPPort

Nodelndex

IOSIndex

ABRAY [i .. 3] OF INTEGER;

ARRAY [i .. 6] OF INTEGER;

INTEGER;

INTEGER;

INTEGER;

INTEGER;

INTEGER;

INTEGER;

B-190

BEGIN

NodeID : INTEGER;

FaultTime : REAL;

TimeToNextMaJorFrame : REAL;

NextMa JorFrame : REAL;

StartDataElement : DataElement Type;

TermDataElement : DataElmentType;

Index : INTEGER;

IOServicePort :- GetOut.Port (IOServiceID) ;

NetworkManager2Port :- GetOutPort (Networ kManager2 ID} ;

IOPPort :- GetOutPort (IOPID) ;

CPPoEt :l GetOutPort (CPID) ;

FOR Index :- 1 TO 3 DO

ApplicationPort [Index] :- GetOutPort (ApplicationID IIndex] } ;

END_

FOR IOSIndex :- I TO 6 DO

IOSPort [IOSIndez] :- GetOutPort (IOSID [IOSIndex]) ;

END;

FOR NodeID :l i TO MaxNodeID DO

ReportLevel [NodeID] :- -I;

END;

TermDataElement.EventID :- 41;

TermDataElement.Frequnncy :- NonCyclic;

TermDataElement.NonCyclicData.N_Variation :- RunTerm;

StartDataElement.EventID :- 0;

StartDataElement.Frequency :_ NonCyclic;

$tartDataElement.NonCyclicData.N_Variation :- RunStart;

StartDataElement.NonCyclicData.FaultTime :- 0.0;

StartDataElement.NonCyclicData.FirstFDIR :- StartCPFDIRTime;

LOOP

WAITUNTIL EVENT

NetworkReady:

IF UseInitialSeed THEN

SetSeedValue (I, InitiaISeed} ;

END_

NOW Restart <- StartRunNumber;

FOR NodeID :- i TO MaxNodeID DO

ReportLevel [NodeID] :- SystemReportLevel;

END;

i Restart :

WriteString (ParamO_t, "Run number "};

WriteInt (ParamOur, Restart, 0) ;

WriteLn (ParamOut} ;

IF Restart > StartRunNumber THEN

(* turn off the report control *)

(* turn report control back on if desired *)

B-191

TarmDataEloment.SimulationTine :- clock;

TarmDataElemont .NonCyclicData.FinalSood :- GetSoedValuo (I) ;

Wr iteDataElemantType (TermDataElement) ;

FlushDataStructure;

EndCollectingData;

(* Rostore link removed during previous run. *)

IF LinkFaults THEN

RestoreAr c (Sour ceFaultNode, DestFaultNode) ;

END;

END;

ResetTimar;

Star tCollectingData (Experiment Info 11],Exper iment In fo [2],Experiment Info [3],

Restart, Experiment Info [4]) ;

StartDataElement.SimulationTime :- clock;

StartDataElement.NonCyclicData. InitialSeed :- GetSeedValue (I) ;

(*
* Tell everybody to go back to initial state.

*I
IOSIndex :- i;

WHILE (IOSIndex <- 6) AND (IOSIDIIOSIndex] <> 0) DO

NOW outport IIOSPort [IOSIndex]] ^.ResetCommand <- TRUE;

lq_C(IOSIndex) ;

END;

FOR NodeIndex :- 1 TO NumberOfNodes DO

IF NetworklNodes [NodeIndex] <> 0 THEN

NOW outport {GetOutPort (NetworklNodes INodeIndex])]^ .ResetCom_and <- TRUE;

END;

IF Network2Nodes {NodeIndex] <> 0 THEN

NOW outport [GetOutPort (Network2Nodes [NodeIndex] }]̂ . ResetCommand <- TRUE;

END;

END;

NOW outport [IOServicePort] ^.Resetcommand <- TRUE;

NOW outport INetworkManager2Port] ^.ResetCoaRand <- TRUE;

NOW outport [IOPPort] ^.ResetCommand <- TRUE;

NOW outport[CPPort] ^ .ResetCommand <- TRUE;

(*
* Schedule the first application to run.

*)
AFTER StartCPFDIRTime outport[CPPort]^.Su_itSystem <- TRUE;

AFTER StartIOPFDIRTime outport [IOPPort] ^.SubmitSystem <- TRUEi
FOR Index :- 1 TO 3 DO

AFTER 0. 010 outport [ApplicationPort [Index]]^.ResetCo_n_nd <- TRUE;

END;

(*
* Start sampling at the start of the 2nd major frame. Note that

* the command is only set to the first and fourth IOS. This

* is all that is needed to reset the network utilization probes.

*)
AFTER SecondMajorFrame outport [IOPPort] ^.ResetProbeCommand <- TRUE;

AFTER SecondMajorFrame outport[CPPort]^.ResetProbeCo_mand <- TRUE;

AFTER SecondMajorFrame ou_port [IOServicePort] ^.ResetProbecOmmand <- TRUE;

B-192

AFTER SecondMa jorFrame outport [IOSPort [I]]^.ResetProbeCommand <- TRUE;

AFTER SecondMajorFrame out]portIIOSPort[4]]^.ResetProbeCommand <- TRUE;

IF LinkFaults THEN

FaultTime :-Kandon(1, 0.0, 0.040);

AFTER (SecondMajorFramo + FaultTime) insertFault <- TRUE;

StartDataElement.NonCyclicData.FaultTime :- SeconcE4ajorFrama + FaultTime;

ELSE

AT RealToDFloat (SimulationLength - MajorFrameLength) StopProbe <- TRUE;

IF Restart - EndRunNumbar THEN

AFTER SimulationLength StopSimulation <- TRUE;

ELSE

AFTER SimulationLength Restart <- Restart ÷ i;

END;

END;

WriteDataEl=nentType (StartDataElement) ;

StopSimulation :

TermDataElement.SimulationTime :- clock;

TermDataElement .NonCyclicData. FinalSeed :- GetSeedValue (1} ;

WriteDataElementType (TermDataElment) ;

FlushDataStructure;

EndColloctingData;

ResetTimer; (* has effect of stopping the simulation *}

InsortFault :

RemoveArc (SourceFaultNode, DeetFaultNode) ;

REPORT "%d,%d" SourceFaultNode, DestFaultNode TAGGED "Removed link between nodes ";

WAITUNT TL (NetworkReady)

NetworkRaady :

TimeToNextMajorFrame '- MajorFrameLength - RealMod(clock - 0. 010, MajorFrameLength) ;

NextMajorFrame :- TimeToNextMajorFrame + MajorFrameLength;

AFTER NextMajorFrama StopProbe <- TRUE;

IF Restart - EndRunNumher THEN

AFTER (NextMajorFrame) StopSimulation <- TRUE;

ELSE

AFTER (NextMajorFrame) Restart <- Restart + I;

END;

END;

StopProbe :

IF StopProbe THEN

FOR Index :- 1 TO NumberOfProbes DO

SAMPLE 0.0 WITH SystemProbeIIndex] ;

END;

(* this forces the last samples to be recorded *)

B-193

END;

END;

END Controls.

TermDataElement .NonCyclioData. CPTimeUsed "- Syste_Probe [1]^. SumX;

TermDa_Element .NonCyclicData. CPTimeAvall :- SystemProbe [1]^. TEnd - SystemProbe [i] ^.TStart;

TermDataElement.NonCyclicData. IOPTimeUsed :- SystemProbe [2]̂ . SumX;

TermDataElement .NonCyclicData. IOPT1meAvail :- SystemProbe [2]^.TEnd - SystemProbe [2]^.TStart;

TermDataElement.NonCyclicData.NWTimeUsed :- SystemProbe {3] ^. SumX;

TermDataElement.NonCyclicData.NWTimQAvail :- Syste_Probe [3] ^ .TEnd - SystemProbe [3] ^. TStart;

TermDataElement.NonCyclicData. IOSysTimeUsed "- SystemProbeI4]A.SumX;

TermDataElement.NonCyclicData. IOSysTimeAvail :- SystemProbe [4]̂ .TEnd - SystemProbe [4]^.TStart;

END;

B-194

PRINCIPAL

B-195

DEVM principal;

DEVMS CentralDB, IOS, AIPSNode, DIU, IOSorvice, Not/4anger, Applicatn,

DEVC

Processor, Controls;

RootLinkOutboard - (OutputTransaction NodeCommandFrame);

RootLinkInSoard - (NodeR_sponseFrame InputTransaction);

NodeToNode - (NodeResponseFrame NodeComnandFrame) ;

NodeToDIU - (NodeResponseFramo DIUCcw_andFrame) ;

DIUToNode - (DIUResponseFrame NodeComlandFrame) ;

ServiceManagerConn- (ManagerServicaRqst ServiceReq_est,

ICManager2Response IONetworkResponso};

ManagerRequest - (ICNotworkRequest IOSorvlceRequost,

NewNetworkState RtnNetworkToService};

AppResponse - (ApplicationRosponse ResponseApplication};

AppRequest - (RequestAppllcation IOServiceRequest);

NIOutConnection - (ChainToIOS ChainToProcess,

StopIOS StopChain);

NIInConnection - (IOChainRosponse DataFromIOS,

ChainFinishod ChainCompleted);

Submit = (ProcessorRequest SubmuttProcess);

Receive - (Completed ProcessorResponse);

SchAndResetSystem - (Sub_tSystem StartSystem,

ResetCommand Reset,

ResetProbeCamunand ProboReset);

SystemReady - (ServiceAvailable NetworkReady);

ResetSystem - (ResotCommand Reset);

ResetProbeAndSys - (ResetCommand Reset,

ResetProbeCcmmand ProbeReset};

BEGIN

CheckQueue :- FALSE;

CheckM_nory :- FALSE;

WriteString(ParamOut,

WriteLn(ParamOut);

InitSimulator;

Simulate(100.0);

TerminateSimulator;

END principal.

"******* MIRON IS DOING THE MEMORY MANAGE_}_T *******");

B-196

i i ii i i i i

I. Report No.

NASA CR- 182004

4. Title snd SubtitlG

Report Documentation Page

2. Govemmem Acceuion INIo. 3. Recil)iem's Cacak_g No.

5, R_ Dam

Design of

Control

7: Authorts)

an Integrated Airframe/Propulsion

System Architecture

Gerald C. Cohen

C. William Lee

Michael J, Strickland
9. Performing Organization Name Mbd Address

Boeing Advanced Systems

P.O. Box 3707, MS 33-12

Seattle, WA 98124-2207

12. $_ring Agency Name and Address

NASA Langley Research Center

Hampton, VA 23665-5225

March 1990

6. PedmmingOrgm_zation Code

e.Pedo._.gom,n_,,_.R,_o,No: "

10. Wo_rk Und No.

505-_6-7 1-02

1I.C_tr_t m G,mm No.

NAS I- 18099

13.T_,of_ _P4_ C_,U

Contractor Report

14. $_lOr_Ig Agency Code

15: Supl)|ementew Notes

Langley Technical Monitor: Daniel L. Palumbo

16. Abstract

This report describes the design of an integrated Airframe/Propulsion

Control System Architecture. The design is based on a prevalidation

methodology that uses both rel_abilityand performance tools. The report

gives an account of the motivation for the final design and problems

associated with both reliability and performance modelling. The

appendices contain a listing of the code for both the reliability and

performance model used in the design.

L

17. I(ev Words (Suggesled by Authorls)l 18. Dist.bulion Statement

Flight critical architecture, redundancy

techniques, integrated flight/propulsion

control, ASSIST, SURE, DENET,

reliability models, performance models

19. _cur,tvClass,f.(ofth,sreport_ _.S_uriwClauil. lOfth_spage)

Unclassified Unclassified

Subject Category 66

,21, No of pages

563

22. Price

NASA FORM 1626 OCT 86

